

BOUND ON HOMOGENEOUS ARITHMETIC PROGRESSION SUBSETS

FEDERICO GLAUDO

Lemma 0.1. *Let $S \subseteq \mathbb{Z}^d$ be a finite set. We have,*

$$\prod_{i=1}^d |S \setminus (S - e_i)| \geq |S|^{d-1}.$$

Proof. Follows from Loomis-Whitney. □

Lemma 0.2. *Let $x_1 \geq x_2 \geq \dots \geq x_n \geq 0$ be a nonincreasing sequence and let $a_1, a_2, \dots, a_n \geq 0$ be an n -tuple of nonnegative numbers. Then,*

$$a_1 x_1 + a_2 x_2 + \dots + a_n x_n \leq (x_1 + x_2 + \dots + x_n) \cdot \max_{k=1}^n \frac{a_1 + a_2 + \dots + a_k}{k}$$

Theorem 0.3. *We say that a subset of \mathbb{N} is a homogeneous arithmetic progression if it consists of $\{a, 2a, 3a, \dots, ab\}$ for some $a \geq 1$ and $b \geq 1$.*

A finite set $X \subseteq \mathbb{N}$ with size $n = |X|$, contains at most $(1 + o(1))n \log^2 n$ homogeneous arithmetic progressions.

Proof. Let $\eta : \mathbb{N} \rightarrow \mathbb{N}$ be the function such that, for any $n \geq 1$, $\eta(n)$ is the largest divisor of n that is not divisible by any prime smaller or equal than n .

As a first observation, we can assume without loss of generality that $\eta(s) = 1$ for all $s \in S$. Let P be a power of 2 larger than the largest element of S . Define $S' \subseteq \mathbb{N}$ as

$$S' = \left\{ \frac{s}{\eta(s)} P^{\eta(s)} : s \in S \right\}.$$

Observe that $|S'| = |S|$ and $\eta(s') = 1$ for all $s' \in S$. Furthermore, since any η is constant on any homogeneous arithmetic progression of size at most n , the number of homogeneous arithmetic progressions contained in S' is at least the number of homogeneous arithmetic progressions contained in S . Therefore, we may replace S with S' and obtain the assumption that $\eta(s) = 1$ for all $s \in S$.

Let d be the number of primes up to n and let $2 = p_1 \leq p_2 \leq p_3 \leq \dots$ be the prime numbers. Let $\varphi : \mathbb{N} \rightarrow \mathbb{N}^d$ be the map that satisfies $\varphi(n)_i = v_{p_i}(n)$, that is, it maps n into the exponents of its factorization (considering only primes $\leq n$).

Since $\eta(s) = 1$ for all $s \in S$, φ is injective on S and therefore $|S| = \varphi(S) \subseteq \mathbb{Z}^d$.

Given $1 \leq k \leq n$, let S_k be the set containing all s such that $s, 2s, 3s, \dots, ks \in S$. Let $\pi(k)$ be the number of primes $\leq k$. Observe that for any $s \in S_k$, we have $\varphi(s) \in \varphi(S) \cap (\varphi(S) + e_i)$ for all $i = 1, 2, \dots, \pi(k)$. So, thanks to Lemma 0.1, we have

$$n^d \exp \left(- \sum_{i=1}^d \frac{|S_{p_i}|}{n} \right) \geq n^d \prod_{i=1}^d \left(1 - \frac{|S_{p_i}|}{n} \right) = \prod_{i=1}^d |S \setminus S_{p_i}| \geq n^{d-1}$$

which implies

$$(0.1) \quad \sum_{i=1}^d |S_{p_i}| \leq n \log(n).$$

Furthermore, by definition $|S_k| \geq |S_{k+1}|$. Thus, the quantity that we want to bound satisfies

$$\sum_{k=1}^n |S_k| \leq n + \sum_{i=1}^d |S_{p_i}|(p_{i+1} - p_i).$$

Applying Lemma 0.2, recalling Eq. (0.1), we deduce

$$\sum_{i=1}^d |S_{p_i}|(p_{i+1} - p_i) \leq n \log(n) \max_{1 \leq k \leq d+1} \frac{p_k}{k}.$$

Joining the last two inequalities yields the desired statement thanks to the prime number theorem. \square

Remark 0.1. The set $X = \{1, 2, \dots, n\}$ contains $(1+o(1))n \log(n)$ homogeneous arithmetic progressions.

FEDERICO GLAUDO
 SCHOOL OF MATHEMATICS, INSTITUTE FOR ADVANCED STUDY, 1 EINSTEIN DR., PRINCETON NJ 05840,
 U.S.A.

Email address: `fglaudo@ias.edu`