
A Compact Book in

Measure Theory

Federico Glaudo



Preface

In the Spring of 2024, I had the privilege of teaching Measure Theory (MAT 425) to
Princeton undergraduates. Equally ambitious and unprepared, I decided not to follow
any book. In hindsight this multiplied my workload tenfold, but I like to believe that it
also led to a noticeable improvement in the course’s quality. To provide students with
some material and to have a reference for myself, I began writing down some very concise
lecture notes, which eventually developed into this document (which was compiled on
September 7, 2024).

This is not a standard book by any means. In fact, it might not even qualify as a
book. But if it does, it certainly ranks among the shortest on the subject! It offers a
self-contained1 introduction to Measure Theory, with just one minor caveat: there are
no proofs. Instead, it is a compilation of statements and definitions, with occasional
brief comments along the way. The idea2 is that by reading everything in sequence, you
can fill in the gaps (i.e., the proofs) yourself and learn the subject proving everything on
your own, perhaps with a little help from a (more experienced) friend or the internet.

The course was inspired by many sources. Among the books I clearly recall consulting
are [EG15; RF10; SS05; Fol99; Mag12]. Another significant inspiration was my fond
memories of the Measure Theory course taught by Pietro Majer ten years ago in Pisa.

To complement the theory, a lengthy collection of exercises is provided at the end.
The exercises are as important as the core material and are organized to match the
progression of the theory. Consistently with the general style of this document, they
come without solutions. The origin of the exercises is varied: some are classic, some
extend the theory beyond what was covered in class, others were copied from books,
online notes, or websites, and some were created by me.

I thank Gioacchino Antonelli for proofreading an early draft of this document. I
want to thank also the teaching assistants for this course — Hyungjun Choi and Anna
Skorobogatova — as well as all the students who spotted a large number of typos and
inconsistencies. I deeply enjoyed teaching this course and I hope that my enthusiasm
was contagious.

1We take for granted only basic facts in topology.
2Admittedly, the real reason is that I did not want to type out the proofs in LATEX while preparing

the course. But I grew fond of this format and convinced myself that I would have appreciated it as a
student. Whether I would have found it challenging or absurd is another matter.
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1. Basic definitions

Definition 1.1 (σ-algebra). Let X be an arbitrary set. A σ-algebra A Ď 2X is a family
of subsets of X such that:

• H P A,

• E P A ùñ Ec P A,

• pEkqkPN Ď A ùñ
Ť

kPNEk P A.

Equivalently, a σ-algebra is a nonempty family of subsets closed under complement and
countable union.

The elements of the σ-algebra are called measurable sets.

Proposition 1.2. A σ-algebra is closed under difference and countable intersection.

Lemma 1.3 (σ-algebra generated). Let F Ď 2X be a family of subsets of a base set X.
Denote by σpF q the intersection of all the σ-algebras containing all sets in F . The family
σpFq is a σ-algebra, and in particular it is the smallest σ-algebra that is a superset of
F . The family σpFq is called the σ-algebra generated by F .

Definition 1.4 (σ-additivity). Let S Ď 2X be a family of subsets of X. A function
µ : S Ñ r0,8s is σ-additive if, whenever

Ů

kPNEk “ E, with pEkqkPN, E P S, we have

ÿ

kPN
µpEkq “ µpEq.

Definition 1.5 (Measure and measure space). Let A Ď 2X be a σ-algebra. A measure
on A is a σ-additive function µ : A Ñ r0,8s such that µpHq “ 0.

A measurable space is a pair pX,Aq, where A Ď 2X is a σ-algebra.
A measure space is a triple pX,A, µq, where A Ď 2X is a σ-algebra and µ : A Ñ r0,8s

is a measure.

Lemma 1.6. Let pX,A, µq be a measure space. The measure µ is monotone, i.e., if
E Ď F are measurable sets, then µpEq ď µpF q.

Definition 1.7 (Dirac δ measure). Let X be an arbitrary set and let x0 P X be one of
its elements. We denote by δx0 the measure on 2X such that δx0pEq :“ rx0 P Es.

Proposition 1.8. Let pX,A, µq be a measure space. The following statements hold.

Linear combination If ν : A Ñ r0,8s is another measure, then aµ ` bν is a measure on A for any
a, b ě 0.
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Restriction For any measurable set A P A, the function µA : A Ñ r0,8s defined as µApEq :“
µpA X Eq is a measure.

Push-forward Let f : X Ñ Y be an arbitrary function; let f#pAq Ď 2Y be the family tE Ď Y :

f´1pEq P Au; let f#pµq : f#pAq Ñ r0,8s be the function f#pµqpEq :“ µpf´1pEqq.
The triple pY, f#pAq, f#pµqq is a measure space.

Definition 1.9. Let pEkqkPN and E be subsets of a set X.

• The notation Ek Õ E indicates that Ek Ď Ek`1 for all k P N and
Ť

kPNEk “ E.

• The notation Ek Œ E indicates that Ek Ě Ek`1 for all k P N and
Ş

kPNEk “ E.

Proposition 1.10. Let pX,A, µq be a measure space. Let pEkqkPN and E be measurable
space. Then the following two statements hold.

• If Ek Õ E, then µpEkq Õ µpEq.

• If µpE1q ă 8 and Ek Œ E, then µpEkq Œ µpEq.

Lemma 1.11. Let F Ď 2X be a family of subsets closed under (finite) intersection,
(finite) union, and difference. Let µ : F Ñ r0,8s be a σ-additive function. If pEkqkPN, E
are elements of F such that E Ď

Ť

kPNEk, then µpEq ď
ř

kPN µpEkq.
Moreover, if the family pEkq1ďkďk0 is finite then the statement holds also if we assume

µ to be only additive (instead of σ-additive).

Lemma 1.12 (Borel-Cantelli). Let pX,A, µq be a measure space. For any sequence
pEkqkPN Ď A of measurable sets so that

ř

kPN µpEkq ă 8, it holds µplim supkPNEkq “ 0.
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2. Construction of measures

The goal of this chapter is to develop a toolbox to construct measures starting from
some simpler data. Although completely elementary, some of the arguments are deli-
cate and technical. The main result is Carathéodory’s Theorem (see Theorem 2.16), a
fundamental result that will be used many times in these notes.

Definition 2.1 (Semiring). Let X be an arbitrary set. A semiring S Ď 2X is a family
of subsets of X such that:

• H P S,

• E,F P S ùñ E X F P S,

• For any E,F P S, there is a finite collection E1, E2, . . . , En P S such that EzF “
Ůn

k“1Ek.

Lemma 2.2. For a semiring S Ď 2X , let \S be the family of its finite disjoint unions.
The family \S is closed under finite intersection, finite union, and difference.

Definition 2.3 (Rectangles). Let Rectd Ď 2R
d
be the family of subsets of Rd that are

either the empty set or can be expressed as

pa1, b1s ˆ pa2, b2s ˆ ¨ ¨ ¨ ˆ pad, bds,

where ai ă bi for all 1 ď i ď d. The elements of Rectd are called rectangles.

Lemma 2.4. The family Rectd is a semiring.

Lemma 2.5. Let µ : S Ñ r0,8s be a σ-additive function on a semiring S. It admits a
unique σ-additive extension to \S.

The statement holds also if one replace both occurrences of the word “σ-additive”
with the word “additive”.

Definition 2.6. Let µ : S Ñ r0,8s be a σ-additive function on a semiring S Ď 2X .
Define µ˚ : 2X Ñ r0,8s as the function

µ˚pEq :“ inf
EĎ

Ť

kPN Ek

ÿ

kPN
µpEkq,

where all the subsets Ek must belong to S.

Lemma 2.7. Let µ : S Ñ r0,8s be a σ-additive function on a semiring S Ď 2X . If
E Ď

Ť

kPNEk, where E, pEkqkPN are arbitrary subsets of X, then µ˚pEq ď
ř

kPN µ˚pEkq.
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Lemma 2.8. Let µ : S Ñ r0,8s be a σ-additive function on a semiring S Ď 2X . It
holds µ “ µ˚ on S.

Definition 2.9 (Outer measure). An outer measure (or exterior measure) is a function
µ˚ : 2X Ñ r0,8s so that µ˚pEq ď

ř

kPN µ˚pEkq whenever E Ď
Ť

kPNEk.

Definition 2.10 (Carathéodory-measurable sets). For an outer measure µ˚ : 2X Ñ

r0,8s, a set E Ď X is Carathéodory-measurable if µ˚pAq “ µ˚pA X Eq ` µ˚pAzEq for
all A Ď X. The family of Carathéodory-measurable sets for µ˚ is denoted by Aµ˚ .

Lemma 2.11. Let µ : S Ñ r0,8s be a σ-additive function on a semiring S Ď 2X . Then
all sets in S are Carathéodory-measurable for µ˚.

In order to show:

Theorem 2.12. Let µ˚ : 2X Ñ r0,8s be an outer measure. The triple pX,Aµ˚ , µ˚q is
a measure space.

We employ the following two lemmas:

Lemma 2.13. Let µ˚ : 2X Ñ r0,8s be an outer measure. The family Aµ˚ is closed
under finite union and complement.

Lemma 2.14. Let µ˚ : 2X Ñ r0,8s be an outer measure. If pEkqkPN Ď Aµ˚ and
Ek Õ E, then µ˚pA X Ekq Õ µ˚pA X Eq for all A Ď X.

Definition 2.15 (Finite and σ-finite measure). Let µ : S Ñ r0,8s be a function defined
on a family of subsets S Ď 2X .

The function µ is finite if there is a finite covering X “
Ťn

k“1Ek with pEkq1ďkďn Ď S
such that µpEkq ă 8 for all 1 ď k ď n.

The function µ is σ-finite if there is a countable coveringX “
Ť

kPNEk with pEkqkPN Ď

S such that µpEkq ă 8 for all k P N.

Theorem 2.16 (Carathéodory). Let µ : S Ñ r0,8s be a σ-additive function on a
semiring S Ď 2X . It admits an extension to a measure on the σ-algebra Aµ˚ of the
Carathéodory measurable sets. Moreover, if µ is σ-finite, then any extension of µ to a
measure defined on a σ-algebra contained in Aµ˚ coincides with µ˚.

Definition 2.17 (Negligible sets and complete measure space). Let pX,A, µq be a mea-
sure space.

A set N Ď X is µ-negligible if it exists N Ď N 1 P A so that µpN 1q “ 0.
A measure space is complete if and only if all its negligible sets are measurable.

Lemma 2.18 (Completion of a measure space). Let pX,A, µq be a measure space. Let
A0 Ď 2X be the smallest σ-algebra that extends A and contains all µ-negligible sets.

We have
A0 “

␣

A \ N : A P A, N Ď X µ-negligible
(

.

Define the function µ0 : A0 Ñ r0,8s as µ0pA\Nq “ µpAq, where A P A and N Ď X
is µ-negligible. The function µ0 is a well-defined measure that coincides with µ on A.

The measure space pX,A0, µ0q is the completion of pX,A, µq.

7



A Compact Book in Measure Theory

Proposition 2.19. Let µ˚ : 2X Ñ r0,8s be an outer measure.
Given E Ď X, if µ˚pEq “ 0 then E P Aµ˚. In particular, the measure space

pX,Aµ˚ , µ˚q is complete.

Proposition 2.20. Let µ : S Ñ r0,8s be a σ-additive, σ-finite function on a semiring.
For any E Ď X, the following are equivalent:

• E P Aµ˚, i.e., E is Carathéodory-measurable.

• For any ε ą 0, there is a collection pEkqkPN Ď S so that E Ď
Ť

kPNEk and
µ˚p

Ť

kPNEkzEq ă ε.
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3. The Lebesgue measure

We now move on from the construction of a general measure to the investigation of the
properties of the Lebesgue measure, which is the natural measure in Euclidean spaces.

Definition 3.1 (Lebesgue (pre)measure). Let L d : Rectd Ñ r0,8s be the function
defined as

L dppa1, b1s ˆ pa2, b2s ˆ ¨ ¨ ¨ ˆ pad, bdsq :“ pb1 ´ a1qpb2 ´ a2q ¨ ¨ ¨ pbd ´ adq.

Even though this is not a measure (since Rectd is not a σ-algebra) we will call this
function Lebesgue measure.1

Lemma 3.2. The Lebesgue measure L d is (finitely) additive on Rectd.

Lemma 3.3. The Lebesgue measure L d is σ-additive on Rectd.

Definition 3.4 (Borel sets). For a topological space X, the family of Borel sets BpXq

is the σ-algebra generated by open sets.

Proposition 3.5. In the case of the Lebesgue measure L d, the σ-algebra of Carathéodory-
measurable sets (called Lebesgue-measurable sets in this case) corresponds to the com-
pletion of the Borel sets BpRdq.

Proposition 3.6. Let E Ď Rd be an arbitrary subset. The following statements are
equivalent:

1. E is Lebesgue-measurable.

2. For any ε ą 0, there is an open set O Ď Rd so that E Ď O and L dpOzEq ă ε.

3. For any ε ą 0, there is a closed set C Ď Rd so that C Ď E and L dpEzCq ă ε. If
L dpEq ă 8, then the set C can be chosen compact.

Lemma 3.7. We have the following two statements about how Borel or Lebesgue-
measurable sets are preserved under a map.

• Let f : Rd Ñ Rd be a continuous injective map. If E is a Borel set, then also fpEq

is a Borel set.

• Let f : Rd Ñ Rd be a Lipschitz-continuous injective map. If E is Lebesgue-
measurable, then also fpEq is Lebesgue-measurable.

1Certain books refer to σ-additive functions on semirings as premeasures. We decided to avoid this
naming.
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Proposition 3.8. The Lebesgue measure L d is translation-invariant and d-homogeneous.2

Theorem 3.9. The Lebesgue measure L d is the unique measure on the Borel sets BpRdq

that is translation-invariant, d-homogeneous, and such that p0, 1sd has measure 1.

Proposition 3.10. The Lebesgue measure is invariant under isometries of Rd.

Theorem 3.11 (Vitali). There is not a translation-invariant measure µ : 2R Ñ r0,8s

such that 0 ă µpr0, 1sq ă 8.

Corollary 3.12. There exists a subset E Ď Rd that is not Lebesgue-measurable.

2A measure µ on the Borel sets of Rd is d-homogeneous if µpλEq “ λdµpEq for each Borel set E and
any λ ą 0, where λE :“ tλx : x P Eu.
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4. Measurable functions

As for sets we distinguish a special class — the measurable sets — a similar discrimination
must be employed for functions to be able to develop a meaningful integration theory.

Definition 4.1. Let pX,Aq be a measurable space.

A function f : X Ñ R Y t˘8u is measurable if tf ď λu P A for all λ P R.

Lemma 4.2. Let pX,Aq be a measurable space.

For a function f : X Ñ R Y t˘8u, the following statements are equivalent:

1. f is measurable,

2. tf ă λu P A for all λ P R,

3. tf ě λu P A for all λ P R,

4. tf ą λu P A for all λ P R,

5. ta ă f ď bu P A for all a ă b,

6. f´1pOq P A for all open sets O Ď R,

7. f´1pCq P A for all closed sets C Ď R,

8. f´1pBq P A for all Borel sets B Ď R.

Lemma 4.3. Let pX,Aq be a measurable space. If f1, f2, . . . , fn : X Ñ R is a finite
collection of measurable functions and g : Rn Ñ R is continuous, then gpf1, . . . , fnq :
X Ñ R is measurable.

Lemma 4.4. The sum, difference, product, division, maximum, and minimum, supre-
mum, infimum, lim sup, lim inf of measurable functions is measurable.

Proposition 4.5. For a topological space X, consider the measurable space pX,BpXqq.
Any continuous function f : X Ñ R is measurable.

Definition 4.6. Let E Ď X be an arbitrary subset, we denote by χE : X Ñ R the
characteristic function of E, i.e.,

χEpxq :“

#

1 if x P E,

0 if x R E.
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Definition 4.7. Let pX,Aq be a measurable space. A simple function f : X Ñ R is a
finite linear combination of characteristic functions of measurable sets, i.e.,

f “

n
ÿ

k“1

λkχEk
,

where pλkq1ďkďn Ď R and pEkq1ďkďn Ď A.

Simple functions bridge the gap between measurable sets — which are well-understood
at this point — and generic measurable functions. Indeed they allow us to transfer our
understanding of measurable sets to measurable functions.

Lemma 4.8. Let pX,Aq be a measurable space. A function f : X Ñ R is simple if and
only if its image is finite and f´1pλq P A for all λ P fpXq.

The following property of (nonnegative) measurable functions could also be taken as
an alternative definition.

Theorem 4.9. Let pX,Aq be a measurable space and let f : X Ñ r0,8s be a nonnegative
measurable function. There exists a sequence pfkqkPN of nonnegative simple functions
such that fkpxq Õ fpxq for all x P X.

Corollary 4.10. Let pX,Aq be a measurable space and let f : X Ñ R Y t˘8u be
a measurable function. There exists a sequence pfkqkPN of simple functions such that
|fkpxq| Õ |fpxq| and fkpxq Ñ fpxq for all x P X.

Definition 4.11. Let pX,A, µq be a measure space. We say that a property holds µ-
almost everywhere in X if the set of points of X that do not satisfy this property is
µ-negligible.

Theorem 4.12 (Egorov). Let pX,A, µq be a measure space.
Let pfkqkPN, f : X Ñ R be measurable functions so that fk Ñ f pointwise µ-almost

everywhere in a measurable set E P A with finite measure, i.e., µpEq ă 8.
Then, for any ε ą 0, there is a measurable set Eε Ď E so that µpEzEεq ă ε and

fk Ñ f uniformly in E.

Theorem 4.13 (Lusin). Let f : E Ď Rd Ñ R be a measurable function, where E is a
measurable set with finite measure, i.e., L dpEq ă 8.

Then, for any ε ą 0, there is a measurable set Eε Ď E with L dpEzEεq ă ε such that
f |Eε

: Eε Ñ R is continuous.
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5. Integration Theory

The development of integration theory progresses by gradually expanding the types of
functions we can integrate. Its value lies in both the robustness of the integral (e.g., the
validity of the dominated convergence theorem) and the broad range of functions it can
handle.

Definition 5.1. Let pX,A, µq be a measure space.
Given a nonnegative simple function f : X Ñ r0,8q, its integral

ş

X f dµ is defined
as

ż

X
f dµ :“

ÿ

λPfpXq

λµpf´1pλqq.

Lemma 5.2. Let pX,A, µq be a measure space.
Given a nonnegative simple function f “

řn
k“1 λkχEk

, with λk ě 0 and Ek P A for
all 1 ď k ď n, we have

ż

X
f dµ “

n
ÿ

k“1

λkµpEkq.

Lemma 5.3. Let pX,A, µq be a measure space.
Let f, g : X Ñ r0,8q be two nonnegative simple functions. The integral for nonneg-

ative simple functions satisfies the following properties.

Monotonicity If f ě g, then
ş

X f dµ ě
ş

X g dµ.

Linearity Given α, β ě 0, we have
ş

X αf ` βg dµ “ α
ş

X f dµ ` β
ş

X g dµ.

Almost everywhere If f “ g µ-almost everywhere, then
ş

X f dµ “
ş

X g dµ.

Restriction For a measurable set E P A, observe that pE,AE , µq, where AE :“ tA P A : A Ď

Eu, is a measure space. It holds
ż

X
fχE dµ “

ż

E
f dµ,

where the second integral is interpreted as an integral in the measure space pE,AE , µq.

Definition 5.4. Let pX,A, µq be a measure space.
Given a nonnegative measurable function f : X Ñ r0,8s, its integral

ş

X f dµ is
defined as

ż

X
f dµ :“ sup

0ďφďf
φ is simple

ż

X
φdµ.
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Theorem 5.5 (Fatou’s Lemma). Let pX,A, µq be a measure space.
Let pfkqkPN : X Ñ r0,8s be a sequence of nonnegative measurable functions. Then

ż

X
lim inf
kÑ8

fk dµ ď lim inf
kÑ8

ż

X
fk dµ.

Corollary 5.6 (Monotone convergence). Let pX,A, µq be a measure space.
Let pfkqkPN : X Ñ r0,8s be a sequence of nonnegative measurable functions so that

fk Õ f µ-almost everywhere. Then

ż

X
fk dµ Õ

ż

X
f dµ.

Lemma 5.7. Let pX,A, µq be a measure space.
Let f, g : X Ñ r0,8s be two nonnegative measurable functions. The integral for

nonnegative measurable functions satisfies the same properties stated in Lemma 5.3.

Definition 5.8. Let pX,A, µq be a measure space.
A measurable function f : X Ñ R Y t˘8u is integrable if

ş

X |f | dµ ă 8.
Given an integrable function f : X Ñ R Y t˘8u, its integral

ş

X f dµ is defined as1

ż

X
f dµ “

ż

X
f` dµ ´

ż

X
f´ dµ.

Lemma 5.9. Let pX,A, µq be a measure space.
Let f, g : X Ñ r0,8s be two nonnegative integrable functions. It holds

ş

Xpf ´gq dµ “
ş

X f dµ ´
ş

X g dµ.

Lemma 5.10. Let pX,A, µq be a measure space.
Let f, g : X Ñ R Y t˘8u be two integrable functions. The integral for integrable

functions satisfies the same properties stated in Lemma 5.3 (for the linearity property,

α, β can be also negative).

Lemma 5.11. Let pX,A, µq be a measure space. For an integrable function f : X Ñ

R Y t˘8u, it holds
ş

X |f | dµ ě |
ş

X f dµ|.

Theorem 5.12 (Dominated convergence). Let pX,A, µq be a measure space.
Let pfkqkPN : X Ñ RYt˘8u be a sequence of measurable functions such that |fk| ď g

for all k P N, where g : X Ñ R Y t˘8u is an integrable function. If fk Ñ f µ-almost
everywhere, then

ż

X
|fk ´ f | dµ Ñ 0 .

As a consequence, one also has

ż

X
fk dµ Ñ

ż

X
f dµ.

1We denote f` :“ maxp0, fq and f´ :“ ´minp0, fq.
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Definition 5.13. Let pX,A, µq be a measure space.
Let L1pX,A, µq (often abbreviated to L1pXq or L1pµq or just L1) be the space of

measurable functions f : X Ñ R Y t˘8u such that
ş

X |f | ă 8. We identify functions
that are identical µ-almost everywhere and we endow such space with the norm

∥f∥L1pXq
:“

ż

X
|f | dµ.

Lemma 5.14. Let pX,A, µq be a measure space.
The space L1pXq is a normed vector space, i.e.,

• ∥λf∥L1 “ λ∥f∥L1 for any λ ą 0 and f P L1pXq,

• ∥f ` g∥L1 ď ∥f∥L1 ` ∥g∥L1, for any f, g P L1pXq.

• ∥f∥L1 “ 0 if and only if f “ 0 µ-almost everywhere.

Definition 5.15 (Complete metric space). A metric space pX, dq is complete if any
Cauchy sequence (i.e., a sequence pxkqkPN Ď X such that supk1ěk dpxk, xk1q Ñ 0 as
k Ñ 8) converges to an element of X.

Theorem 5.16. Let pX,A, µq be a measure space.
The space L1pXq is a complete metric space.

Proposition 5.17. Let pX,A, µq be a measure space.
Let pfkqkPN Ď L1pXq be a sequence of integrable functions such that fk Ñ f in the

L1pXq-distance. There exists a subsequence pfkiqiPN converging to f µ-almost every-
where.

Lemma 5.18. Let pX,A, µq be a measure space.
The family of simple functions is dense in L1pX,A, µq.

Lemma 5.19. The family of continuous and compactly supported functions is dense in
L1pRdq :“ L1pRd,BpRdq,L dq.
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6. Product Measures

Definition 6.1. Let pX,A, µq and pY,B, νq be two complete σ-finite measure spaces.

Define µ b ν : A ˆ B Ñ r0,8s as µ b νpA ˆ Bq :“ µpAqνpBq.

Lemma 6.2. Let pX,A, µq and pY,B, νq be two complete σ-finite measure spaces.

The family A ˆ B Ď 2XˆY is a semiring and µ b ν is σ-additive and σ-finite.

Definition 6.3 (Product measure). Let pX,A, µq and pY,B, νq be two complete σ-finite
measure spaces.

Let the product σ-algebra AbB be the σ-algebra generated by AˆB. Let the product
measure µbν : AbB Ñ r0,8s be the (unique) measure that extends the function µbν
we have defined on A ˆ B.

We will often implicitly extend µ b ν to the completion of the σ-algebra A b Bµbν
.

Lemma 6.4. Let pX,A, µq and pY,B, νq be two complete σ-finite measure spaces.

We have the following statements.

Restriction For any A P A and B P B, it holds that µA b νB “ pµ b νqAˆB.
1

Linearity For two nonnegative real numbers c1, c2 ě 0 and two measures ν1, ν2 : B Ñ r0,8s,

we have µ b pc1ν1 ` c2ν2q “ c1µ b ν1 ` c2µ b ν2.

Universality The σ-algebra A b B is the smallest σ-algebra on 2XˆY such that the projections
πX : X ˆ Y Ñ X and πY : X ˆ Y Ñ Y are both measurable.

Definition 6.5 (Slice). Given x P X and E Ď X ˆ Y , let Ex :“ ty P Y : px, yq P Eu.

Lemma 6.6. Let pX,A, µq and pY,B, νq be two complete σ-finite measure spaces.

Let
Ť

σpAˆBq be the family of countable unions of sets in AˆB. Let
Ş

σ

Ť

σpAˆBq

be the family of countable intersections of sets in
Ť

σpA ˆ Bq.2

For any set E P
Ş

σ

Ť

σpA ˆ Bq:

• The set Ex is B-measurable for every x P X;

• The map x ÞÑ νpExq is A-measurable;

• It holds µ b νpEq “
ş

X νpExq dµpxq.

1For a measure ρ : E Ñ r0,8s and E P E , we denote by ρE : tF P E : F Ď Eu Ñ r0,8s the restriction
of ρ to the subsets of E.

2The two families
Ť

σpA ˆ Bq and
Ş

σ

Ť

σpA ˆ Bq are usually denoted in the literature as pA ˆ Bqσ

and pA ˆ Bqσδ. We avoid this notation as it is hard to remember what it stands for.
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Lemma 6.7. Let pX,A, µq and pY,B, νq be two complete σ-finite measure spaces.

For any set E P A b Bµbν
:

• The set Ex is B-measurable for µ-almost every x P X;

• The map x ÞÑ νpExq is A-measurable;

• It holds µ b νpEq “
ş

X νpExq dµpxq.

Theorem 6.8 (Fubini-Tonelli). Let pX,A, µq and pY,B, νq be two complete σ-finite mea-
sure spaces.

Let f : X ˆ Y Ñ R Y t˘8u be an A b Bµbν
-measurable function such that either

f ě 0 or f P L1pµ b νq.
Then,

• For µ-almost every x P X, the function y Ñ fpx, yq is B-measurable and, if f was
assumed to be integrable, it is integrable with respect to ν.

• The map x ÞÑ
ş

Y fpx, yq dνpyq is measurable and, if f was assumed to be integrable,
it is integrable with respect to µ.

• It holds
ż

XˆY
f dµ b ν “

ż

X

ż

Y
fpx, yq dνpyq dµpxq.

Lemma 6.9. Let pX,A, µq and pY,B, νq be two complete σ-finite measure spaces.
If f : X Ñ R Y t˘8u is a measurable function, then also X ˆ Y Q px, yq ÞÑ fpxq is

measurable.

Proposition 6.10. For any pair of positive integers d1, d2 ě 1, it holds L d1`d2 “

L d1 b L d2 on BpRd1`d2q.

17



7. Signed Measures

Definition 7.1 (Signed measure). Let A Ď 2X be a σ-algebra.
A function µ : A Ñ R is a (finite) signed measure if µpHq “ 0 and µ is σ-additive

(where the infinite summation is required to converge absolutely).
If µ is a signed measure, the triple pX,A, µq is called signed measure space.

Lemma 7.2. If pX,A, µ`q and pX,A, µ´q are two finite measure spaces, then µ` ´µ´ :
A Ñ R is a signed measure.

Lemma 7.3. If pX,A, µq is a measure space and f P L1pX,A, µq is a measurable func-
tion, then fµ : A Ñ R defined as

pfµqpEq :“

ż

E
f dµ

is a signed measure.

Definition 7.4 (Total variation). Let pX,A, µq be a signed measure space.
Define the total variation |µ| : A Ñ r0,8s of the signed measure µ as

|µ|pEq :“ sup
Ů

kPN Ek“E

ÿ

kPN
|µpEkq|.

Lemma 7.5. Let pX,A, µq be a signed measure space.
For E P A, if |µ|pEq ą C ą 0 then it exists a measurable subset E1 Ď E such that

|µpEq| ą C
2 .

Proposition 7.6. If pX,A, µq is a signed measure space, then the total variation |µ| is
a finite measure such that |µpEq| ď |µ|pEq for all E P A.

Definition 7.7 (Mutually singular measures). Let pX,A, µq be a measure space. The
measure µ is supported on E P A if XzE is µ-negligible.

Let ν : A Ñ r0,8s be another measure. The two measures µ and ν are mutually
singular, denoted by µ K ν, if there are two disjoint sets E,F P A so that µ is supported
on E and ν is supported on F .

Theorem 7.8 (Hahn-Jordan Decomposition). Let pX,A, µq be a signed measure space.
There is a partition X “ P \ N , with P,N P A, such that

• µpEq ě 0 if E Ď P ;

• µpEq ď 0 if E Ď N .
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Let µP :“ µ|P
and µN :“ ´µ|N

; µP and µN are finite measures and coincide with

µP “
|µ| ` µ

2
and µN “

|µ| ´ µ

2
.

Moreover, if µ “ µ̃P ´µ̃N for two mutually singular finite measures µ̃P , µ̃N : A Ñ r0,8q,
then µ̃P “ µP and µ̃N “ µN .
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8. Absolute Continuity for Measures

Consider two measures µ, ν on the same measurable space such that whenever a set is
ν-negligible it is also µ-negligible (see Definition 8.1). This chapter (as well as the next
two) tries to understand whether this relatively innocuous assumption leads to some
nontrivial consequences. We will see that the answer is affirmative but getting there
requires a lot of work. More precisely, first we will establish the converse of Lemma 8.3,
that is Theorem 9.20, and then we will obtain a formula for the density f appearing in
the statement (see Theorem 10.10).

Definition 8.1 (Absolutely continuous measure). Let pX,A, µq and pX,A, νq be two
measure spaces.

The function µ is absolutely continuous with respect to ν, denoted by µ ! ν, if
µpEq “ 0 whenever νpEq “ 0 (for any E P A).

Lemma 8.2. Let pX,Aq be a measurable space and let µ, ν : A Ñ r0,8s be two measures
such that µ is finite and µ ! ν.

For any ε ą 0 there is δ ą 0 such that if νpEq ă δ then µpEq ă ε (for any E P A).

Lemma 8.3. Let pX,A, µq be a measure space and let f P L1pµq be a nonnegative
integrable function.

Then, the measure fµ is absolutely continuous with respect to µ.

Theorem 8.4 (Lebesgue’s Decomposition). Let pX,A, µq and pX,A, νq be two σ-finite
measures.

Then, there are two measures µac, µs such that µ “ µac`µs with µac ! ν and µs K ν.
Moreover, such a decomposition is unique.
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9. A detour into Hilbert spaces

We take a detour into the theory of Hilbert space, which allow us to provide a neat proof
of the classical Radon-Nikodym Theorem Theorem 9.20.

Hilbert spaces are the infinite-dimensional generalization of Euclidean spaces.

Definition 9.1 (Hermitian product). Let H be a complex1 vector space. A function
x ¨ , ¨ y : V ˆ V Ñ C is a Hermitian product if (for any x, y, z P H and λ P C)

• xx ` y, zy “ xx, zy ` xy, zy;

• xx, yy “ xy, xy;

• xλx, yy “ λxx, yy;

• xx, xy ą 0 whenever x “ 0.

As immediate consequences, we have

• xx, y ` zy “ xx, yy ` xx, zy;

• xx, λyy “ λ̄xx, yy.

Definition 9.2 (Hilbert space). A Hilbert space is a real or complex vector space en-

dowed with a Hermitian product x ¨ , ¨ y so that the norm |x| :“ xx, xy
1
2 makes it a

complete metric space.

Remark 9.3. The spaces Rd and Cd with the standard product (i.e., xx, yy “
ř

k xkȳk)
are respectively a real and a complex Hilbert space.

Remark 9.4. Any closed subspace of a Hilbert space is itself a Hilbert space.

Remark 9.5. For any measure space pX,A, µq, L2pX,A, µq is a Hilbert space.

Lemma 9.6. Let pH, x ¨ , ¨ yq be a Hilbert space.

For any x, y P H, we have

Cauchy-Schwarz |x| ¨ |y| ě |xx, yy|;

Triangle inequality |x| ` |y| ě |x ` y|.
1The definition works also for real vector space; it suffices to replace C with R everywhere.
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Definition 9.7. Let ℓ2pNq be the sequence of square-summable sequences, that is,

ℓ2pNq :“ tpxkqkPN Ď C :
ÿ

kPN
|xk|2 ă 8u

endowed with the Hermitian product

xx, yyℓ2 :“
ÿ

kPN
ak b̄k.

Lemma 9.8. The space pℓ2pNq, x ¨ , ¨ yℓ2q is a separable Hilbert space.

Lemma 9.9. Let pH, x ¨ , ¨ yq be a Hilbert space.
Given a subset S Ď H, its orthogonal is

SK :“ tx P H : xx, sy “ 0 for all s P Su.

Remark 9.10. For a subset S Ď H, its orthogonal SK is closed (even if S itself was not
closed).

Lemma 9.11. Let pH, x ¨ , ¨ yq be a Hilbert space and let V Ď H be a closed subspace.
For any x P H, there exists a unique point πV pxq P V so that πV pxq ´ x P V K.

Moreover, the map πV : H Ñ V is linear and 1-Lipschitz.

Corollary 9.12. Let pH, x ¨ , ¨ yq be a Hilbert space and let V Ď H be a closed subspace.
The map

pπV , πV Kq : H Ñ V ‘ V K

is an isomorphism.

Theorem 9.13 (Riesz representation). Let pH, x ¨ , ¨ yq be a Hilbert space.
For any linear and continuous operator T : H Ñ C, there is vT P H such that

T pxq “ xvT , xy for all x P H.

Definition 9.14 (Orthonormal system). Let pH, x ¨ , ¨ yq be a Hilbert space.
A sequence of pvkqkPN Ď H is an orthonormal system2 if

• |vk| “ 1 for all k P N,

• xvk, vhy “ 0 whenever k “ h.

Lemma 9.15. Let pH, x ¨ , ¨ yq be a Hilbert space and let pvkqkPN Ď H be an orthonormal
system.

Let V be the closure of the subspace generated by pvkqkPN; then for any x P H we
have

πV pxq “
ÿ

kPN
vkxx, vky and |πV pxq|2 “

ÿ

kPN
xx, vky2.

2For the sake of notational simplicity, we give the definition of orthonormal system only for countable
sequences, but the definition makes perfect sense also for finite sequences (and even for uncountable
ones). Later on we will use the notion of orthonormal system also for finite sequences. Moreover, all the
statements we prove for countable orthonormal system hold also for finite ones.
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Lemma 9.16. Let pH, x ¨ , ¨ yq be a Hilbert space and let pvkqkPN Ď H be an orthonormal
system.

The following statements are equivalent:

1. The subspace generated by pvkqkPN is dense in H.

2. It holds x “
ř

kPN vkxx, vky for all x P H.

3. It holds |x|2 “
ř

kPNxx, vky2 for all x P H.

4. Given x P H, if xx, vky “ 0 for all k P N then x “ 0.

Definition 9.17 (Hilbert basis). A Hilbert basis is an orthonormal system that satisfies
any of the properties of the previous lemma.

Theorem 9.18. Any separable Hilbert space admits a Hilbert basis.

Corollary 9.19. Any separable Hilbert space is isometric to Rd for some d P N or to
ℓ2pNq.

Theorem 9.20 (Radon-Nikodym, Existence of density). Let pX,A, µq and pX,A, νq be
two σ-finite measure spaces with µ ! ν.

There is a function f P L1pνq such that µ “ fν.
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10. Differentiation of measures

This chapter represents the culmination of the theory developed in these notes. Radon-
Nikodym Differentiation Theorem (cf. Theorem 10.10) provides a satisfactory charac-
terization of the relationship between two well-behaved measures in Euclidean space.

The significance of the preliminary results (e.g., Besicovitch Covering Theorem, the
maximal function estimate, Lebesgue differentiation) cannot be overestimated. While
we use them as tools to prove the Radon-Nikodym theorem, they are also profound
results in their own right.

Definition 10.1 (Locally finite measure). Let X be a topological space endowed with
a Borel measure µ : Bpxq Ñ r0,8s.

The measure µ is locally finite if, for any point x P X, there exists a neighborhood
x P Ω such that µpΩq ă 8.

Proposition 10.2 (Finite Ñ outer regular in a metric space). Any finite Borel measure
µ : BpXq Ñ r0,8q on a metric space X is outer regular, i.e., for any Borel set E P BpXq

and any ε ą 0 there is an open set O such that E Ď O and µpOzEq ă ε.

Moreover, the space of bounded continuous functions C0
b pXq is dense in L1pµq.

Corollary 10.3 (Locally finite Ñ outer regular in Rd). Let µ : BpRdq Ñ r0,8s be a
locally finite Borel measure. The measure µ is outer regular and the space of compactly
supported continuous functions C0

c pRdq is dense in L1pµq.

Theorem 10.4 (Besicovitch Covering). For any positive integer d ě 1, there is a con-
stant N “ Npdq such that the following statement holds.

Let F be a family of balls of Rd with uniformly bounded radius.

There exists a subfamily F 1 Ď F such that

• Any point x P Rd belongs to at most N balls in F 1.1

• The center of any ball in F belongs to at least one ball in F 1.

Lemma 10.5. Let µ K ν be two mutually singular locally finite Borel measures on Rd.
Then, for ν-almost every x P Rd, we have

lim
rÑ0

µ
`

Brpxq
˘

ν
`

Brpxq
˘ “ 0.

1The usual statement of the Besicovitch covering Theorem is slightly stronger, asserting that F 1 can
be partitioned into N sets so that any two balls from different sets are disjoint. However, since this
stronger version is not used later in the theory and complicates both understanding and proof, we have
chosen to simplify it.
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Definition 10.6 (Weak L1-norm). Let pX,A, µq be a measure space.
Given a measurable function f : X Ñ R Y t˘8u, its weak L1-norm is

∥f∥L1
wpµq

:“ sup
λą0

λ ¨ µ
`

tx : |fpxq| ą λu
˘

.

Observe that, by Markov’s inequality, ∥f∥L1
w

ď ∥f∥L1 .

Definition 10.7 (Maximal function). Let X be a locally compact metric space and let
µ : BpXq Ñ r0,8s be a locally finite Borel measure.

Let f : X Ñ R Y t˘8u be a Borel function. Its maximal function with respect to
the measure µ, denoted by Mµf : X Ñ r0,8s, is defined as

Mµfpxq :“ sup
rą0

 
Brpxq

|f | dµ.

Theorem 10.8 (L1´L1
w bound for the maximal function). There is a constant C “ Cpdq

such that the following statement holds.
Let µ : BpRdq Ñ r0,8s be a locally finite Borel measure. For any function f P L1pµq,

we have
∥Mµf∥L1

wpµq
ď C∥f∥L1pµq.

Theorem 10.9 (Lebesgue differentiation). Let µ : BpRdq Ñ r0,8s be a locally finite
Borel measure and let f P L1pµq. Then, at µ-almost every point x P Rd, we have

lim
rÑ0

 
Brpxq

|fpyq ´ fpxq| dµpyq “ 0.

A point x P Rd is a Lebesgue point for the function f (with respect to the measure µ) if
the latter identity holds.

Moreover, at µ-almost every point x P Rd, we have

fpxq “ lim
rÑ0

 
Brpxq

f dµ.

Theorem 10.10 (Radon-Nikodym, Formula for the density). Let µ, ν be two locally
finite Borel measures on Rd. Then, we can write µ “

dµ
dν ν ` µs, where µs is a measure

such that µs K ν, while the density dµ
dν P L1pνq is defined as

dµ

dν
pxq :“ lim

rÑ0

µpBrpxqq

νpBrpxqq
.

In particular the latter limit exists and is finite ν-almost everywhere.

Corollary 10.11. Let ν be a locally finite Borel measure on Rd and fix a constant ε ą 0.
For each x P Rd, let Zx be a family of subsets of Rd, together with a radius function

r : Zx Ñ p0,8q, such that

25



A Compact Book in Measure Theory

1. For any E P Zx, E Ď BrpEqpxq.

2. For any E P Zx, νpEq ě εν
`

BrpEqpxq
˘

.

Let µ be a locally finite Borel measure on Rd. At ν-almost-every x P Rd, for all sequences
pEkqkPN so that Ek P Zx and rpEkq Ñ 0 as k Ñ 8, we have

dµ

dν
pxq “ lim

kÑ8

µpEkq

νpEkq
.
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11. Differentiability of functions

We exploit the deep results established in the previous chapter to understand the differ-
entiability properties of various family of functions (monotone, AC, BV, and Lipschitz
functions).

Proposition 11.1. Let I Ď R be an interval.
Given a locally finite1 Borel measure µ : BpIq Ñ r0,8s, there is a weakly increasing

right-continuous function F : I Ñ R such that µppa, bsq “ F pbq ´ F paq for all a, b P I.
Conversely, given a weakly increasing right-continuous F : I Ñ R, there is a unique

Borel measure µ : BpIq Ñ r0,8s such that µppa, bsq “ F pbq ´ F paq for all a, b P I.

Lemma 11.2. Let f : I Ñ R be a weakly increasing function on a interval I. There is a
weakly increasing function f̃ that is right-continuous and such that there is a countable
set A Ď I with the following properties:

• For any x P IzA, fpxq “ f̃pxq.

• For any x P IzA, f is differentiable at x if and only if f̃ is differentiable at x and,
if they are differentiable, f 1pxq “ f̃ 1pxq.

Theorem 11.3 (Lebesgue). Let f : I Ñ R be a weakly increasing function on an
interval. Then f is differentiable almost everywhere and the derivative f 1 is locally
integrable. Furthermore, if f is right-continuous, then there is a singular measure µs K

L 1 such that fpbq ´ fpaq “
ş

ra,bs
f 1 dL 1 ` µsppa, bsq for all a ă b in I.

Definition 11.4 (Function of bounded variation). Let f : I Ñ R be a function on an
interval. We say that f is a function of bounded variation, denoted by f P BV pIq, if

sup
t1ăt2ă¨¨¨ătn

n´1
ÿ

k“1

|fptk`1q ´ fptkq| ă 8.

Lemma 11.5. Let f P BV pIq be a function of bounded variation on an interval. Given
a ă b in I, define

f`pa, bq :“ sup
a“t1ăt2ă¨¨¨ătn“b

n´1
ÿ

k“1

pfptk`1q ´ fptkqq`.

Define f´pa, bq analogously.
Then f` and f´ are (weakly) increasing in their second component, they satisfy

fpbq ´ fpaq “ f`pa, bq ´ f´pa, bq,

1Here, locally finite shall be understood in the topological space I with the topology inherited from
R. In particular, if I “ pa, bq then locally finite does not imply finite.
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and furthermore, if a ă b ă c, we have

f`pa, cq “ f`pa, bq ` f`pb, cq and f´pa, cq “ f´pa, bq ` f´pb, cq.

Proposition 11.6. A function is of bounded variation if and only if it can be expressed
as the difference of two bounded weakly increasing functions.

Definition 11.7 (Absolutely continuous function). Let f : I Ñ R be a function on an
interval. We say that f is absolutely continuous, denoted by f P ACpIq, if for all ε ą 0
there is δ ą 0 so that

L 1
´

n
ğ

k“1

Ik

¯

ă δ ùñ

n
ÿ

k“1

oscpf, Ikq ă ε,

whenever pIkq1ďkďn are disjoint intervals in I and oscpf, Jq “ supxPJ fpxq ´ infxPJ fpxq.

Lemma 11.8. Let f P ACpIq be an absolutely continuous function on an interval. Then
f P BVlocpIq.

Lemma 11.9. Let f P ACpIq be an absolutely continuous function on an interval. Given
a P I, the function t ÞÑ f`pa, tq belongs to ACpI X ra,8qq.

Lemma 11.10. Let f P ACpIq be an absolutely continuous (weakly) increasing function
on an interval. Let µ : BpIq Ñ r0,8s be the locally finite Borel measure such that
µppa, bsq “ fpbq ´ fpaq for all a ă b in I. Then µ is absolutely continuous with respect
to Lebesgue.

Theorem 11.11. Let f : I Ñ R be a function on an interval. The following three
statements are equivalent:

1. f P AClocpIq,

2. There is a locally integrable function g P L1
locpIq such that fpbq´fpaq “

ş

ra,bs
g dL 1

for all a ă b in I.

3. The function f is differentiable almost everywhere and it satisfies the fundamental
theorem of calculus, that is, fpbq ´ fpaq “

ş

ra,bs
f 1 dL 1 for all a ă b in I.

Lemma 11.12 (Distributional derivative). Let f P AClocpIq be an absolutely continuous
function on an open interval I. For any φ P C1

cptpIq, we have

ż

I
f 1φdL 1 “ ´

ż

I
fφ1 dL 1.

Lemma 11.13. Let f : Rd Ñ R be a Lipschitz function such that Bif “ 0 almost
everywhere for all i “ 1, 2, . . . , d. Then f is constant.
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Theorem 11.14 (Rademacher). Let f : Ω Ñ R be a locally Lipschitz function, where
Ω Ď Rd is an open set. The function f is differentiable almost everywhere in Ω and, for
any vector field X P C1

cptpΩ,Rdq, we have2

ż

Ω
∇f ¨ X “ ´

ż

Ω
f divpXq.

2The divergence of a vector field X “ pX1, X2, . . . , Xdq is defined as divpXq :“ B1X1 ` B2X2 ` ¨ ¨ ¨ `

BdXd.
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12. The Change of Variable Formula

Proposition 12.1 (Linear change of variable). For any linear map T : Rd Ñ Rd and

measurable set E P BpRdq, the set T pEq is measurable and

L dpT pEqq “ detpT qL dpEq.

Lemma 12.2 (Integral of push-forward). Let pX,A, µq be a measure space, let pY,Bq be
a measurable space and let T : X Ñ Y be a measurable function, i.e., T´1pBq P A for
all B P B.

Then, for any measurable function f : Y Ñ R Y t˘8u that is either nonnegative or
such that f ˝ T P L1pµq,

ż

Y
f dT#µ “

ż

X
f ˝ T dµ,

where T#µ denotes the push-forward measure, i.e., T#µpBq “ µpT´1pBqq.

Lemma 12.3. Let T : Ω Ñ Ω1 be a homeomorphism between two open sets Ω,Ω1 Ď Rd

so that T is differentiable at x0 P Ω. Then,

lim
rÑ0

L dpT pBrpx0qqq

L dpBrpx0qq
“ |detpdT px0qq|.

Theorem 12.4 (Change of variable formula). Let T : Ω Ñ Ω1 be a locally Lipschitz
homeomorphism between two open sets Ω,Ω1 Ď Rd. Then, for any measurable set E Ď Ω,
its image T pEq is measurable and

L dpT pEqq “

ż

E
|detpdT q| dL d.

Furthermore, for any measurable function f : Ω1 Ñ RY t˘8u that is either nonnegative
or such that f P L1pΩ1q, we have

ż

Ω1

fpyq dL dpyq “

ż

Ω
fpT pxqq |detpdT q|pxq dL dpxq.

The mnemonic rule to remember is that if y “ T pxq, then dy “ |detpdT q|dx.

Corollary 12.5 (Polar coordinates). For any function f P L1pR2q, we have the identity

ż

R2

f dL 2 “

ż 8

0

ż 2π

0
fpr cos θ, r sin θq dθ r dr.
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13. The Isoperimetric Inequality

We conclude this notes with one of the most classical results in mathematics: the isoperi-
metric inequality. The proof that we follow uses the Brunn-Minkowski inequality, which
admits a short (but tricky) proof.

Theorem 13.1 (Brunn-Minkowski inequality). Let E,F Ď Rd be two measurable sets
such that also E ` F :“ te ` f : e P E, f P F u is measurable. Then, we have

L dpE ` F q
1
d ě L dpEq

1
d ` L dpF q

1
d .

Definition 13.2 (Perimeter via Minkowski content). Given a measurable set E Ď Rd,
its perimeter PerpEq is defined as

PerpEq :“ lim sup
rÑ0

L dpErq ´ L dpEq

r
,

where Er :“ tx P Rd : distpx,Eq ă ru.

Lemma 13.3. The perimeter Per is translation-invariant and pd ´ 1q-homogeneous.

Theorem 13.4 (Isoperimetric inequality). For any measurable set E Ď Rd such that
0 ă L dpEq ă 8, we have

PerpEq
1

d´1

|E|
1
d

ě
PerpBq

1
d´1

|B|
1
d

,

where B is any ball (the quantity on the right-hand side does not depend on the choice
of the ball). Equivalently, among all measurable sets with a given measure, the ball
minimizes the perimeter.
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14. Exercises

Exercise 14.1. Let A Ď 2X be a σ-algebra. Show that:

1. If E,F P A, then EzF P A.

2. If pEkqkPN Ď A, then
Ş

kPNEk P A.

Exercise 14.2. For a partition P “ pEkqkPN of the natural numbers (i.e.,
Ů

kPNEk “ N)
let AP Ď 2N be the family of subsets

AP :“
!

ğ

kPS

Ek : S Ď N
)

.

Prove that AP is a σ-algebra and prove that any σ-algebra on N coincides with AP for
some choice of P .

Exercise 14.3. Construct a function µ : 2N Ñ r0,8s that is additive but not σ-additive
(i.e., the additive property holds for finitely many disjoint sets but fails for at least one
choice of countably many disjoint sets).

Exercise 14.4 (Hard). Construct a function µ : 2N Ñ r0,8q that is additive but not
σ-additive. Observe that this exercise differs from the previous one because µ is not
allowed to have the value 8.

Exercise 14.5 (Counterexample to uniqueness in Carathéodory’s Theorem). Construct
a semiring S Ď X, a σ-additive function µ : S Ñ r0,8s, and two distinct measures
µ1, µ2 : σpSq Ñ r0,8s defined on the σ-algebra generated by S that coincide with µ on
S, i.e., µpEq “ µ1pEq “ µ2pEq for all E P S.

Exercise 14.6. Let µ : S Ñ r0,8s be a monotone (i.e., E Ď F implies µpEq ď µpF q) σ-
finite function on a semiring S Ď 2X . Show that there is a countable partition pEkqkPN Ď

S (that is X “
Ů

kPNEk) such that µpEkq ă 8 for all k P N.

Exercise 14.7. Let µ : A Ñ r0,8s be a function defined on a σ-algebra A Ď 2X such
that
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• µpHq “ 0;

• For any two disjoint sets E,F P A, it holds µpE \ F q “ µpEq ` µpF q;

• For any sequence pEkqkPN Ď A so that Ek Õ E, it holds µpEkq Õ µpEq.

Show that pX,A, µq is a measure space.

Exercise 14.8. Show that the set of real numbers in r0, 1s whose decimal expansion
does not contain the digit 3 is negligible.

Exercise 14.9. Fix ε ą 0. A real number x P R is ε-approximable if there are infinitely
many pairs of integers a P Z, b P N such that |x ´ a

b | ă b´p2`εq. Show that almost every
real number is not ε-approximable.

Exercise 14.10. Construct a closed subset of R with empty interior that is not negli-
gible.

Exercise 14.11. Let C Ď Rd be a convex set. Prove that its topological boundary BC
is negligible.

Exercise 14.12. Let pX,A, µq and pX,A1, µ1q be two measure spaces such that µ “ µ1

on A X A1. Let f : X Ñ r0,8s be a nonnegative measurable function with respect to
the σ-algebra A X A1. Show that

ż

X
f dµ “

ż

X
f dµ1,

where the first integral is computed in the measure space pX,A, µq and the second in
the measure space pX,A1, µ1q.

Exercise 14.13. Construct a measure space pX,A, µq and a nonnegative measurable
function f : X Ñ r0,8s such that

ż

X
f dµ ă inf

fďφ
φ:XÑr0,8s simple

ż

X
φdµ.

Exercise 14.14. Find a sequence of integrable functions pfkqkPN : r0, 1s Ñ R such that
fk Ñ 0 everywhere but

ş

r0,1s
fk “ 1 for all k P N.

33



A Compact Book in Measure Theory

Exercise 14.15. Find a sequence of integrable functions pfkqkPN : r0, 1s Ñ R such that
fk Ñ 0 in L1 but, for all 0 ď x ď 1, the sequence of real numbers pfkpxqqkPN does not
have a limit.

Exercise 14.16. Construct a measurable function f : R Ñ R such that if f “ g almost
everywhere then g is discontinuous at every point.

Exercise 14.17. Let pX,A, µq be a measure space. Fix a real number p ě 1.
Let LppX,A, µq be the set of measurable functions f : X Ñ RY t˘8u such that |f |p

is integrable quotiented with respect to the almost-everywhere equivalence of functions
(as we did in class to define L1pX,A, µq). Given f P LppX,A, µq, let us define

∥f∥Lp :“
´

ż

X
|f |p dµ

¯
1
p
.

Prove that LppX,A, µq with ∥ ¨ ∥Lp is a complete normed vector space.

Exercise 14.18 (Markov Inequality). Let pX,A, µq be a measure space and let f P

L1pX,A, µq be an integrable function.
Show that, for any λ ą 0, µpt|f | ą λuq ď 1

λ

ş

X |f | dµ.

Exercise 14.19 (Jensen Inequality). Let pX,A, µq be a measure space such that µpXq “

1. Let f1, f2, . . . , fd : X Ñ R be a collection of integrable functions. Show that, for any
convex function Φ : Rd Ñ r0,8s, it holds

Φ
´

ż

X
f1 dµ,

ż

X
f2 dµ, . . . ,

ż

X
fd dµ

¯

ď

ż

X
Φpf1, f2, . . . , fdq dµ

Exercise 14.20 (Hölder Inequality). Let pX,A, µq be a measure space.
Let f, g : X Ñ R Y t˘8u be two measurable functions. For any 1 ă p, q such that

1 “ 1
p ` 1

q , show that

∥f∥Lp∥g∥Lq ě

ż

X
|fg| dµ.

Exercise 14.21. Show that there is a subset of R that is Lebesgue measurable but not
Borel.

Exercise 14.22 (Uniform integrability). Let pX,A, µq be a measure space and let f P
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L1pX, ,µq be an integrable function.
Show that for any ε ą 0 there is δ ą 0 such that, if E P A satisfies µpEq ă δ, then

ş

E |f | dµ ă ε.

Exercise 14.23. Construct a nonzero, finite, rotationally-invariant measure on the σ-
algebra of Borel sets of the sphere Sd´1 Ď Rd.

Exercise 14.24. What is the maximum of
ş

r0,1s
xfpxq dL 1pxq over all measurable func-

tions f : r0, 1s Ñ R Y t˘8u such that
ş

r0,1s
f2dL 1 ď 1?

Exercise 14.25. Show that
ş

r0,1s
f 1 dL 1 “ fp1q ´ fp0q for all functions f P C1pr0, 1sq.

Exercise 14.26. Let pX,A, µq be a measure space. Let C Ď R be a closed set.
Assume that fk Ñ f in L1pµq and fkpxq P C for µ-almost every x P X for all k P N.

Show that fpxq P C for µ-almost every x P X.

Exercise 14.27. Let X be a topological space. Consider the family of subsets

S :“ tO X C : O Ď X open, C Ď X closedu.

Show that S is a semiring.

Exercise 14.28. Let µ1, µ2 : BpRdq Ñ r0,8s be two finite measures defined on the Borel
sets of Rd. Show that if

ş

Rd φdµ1 “
ş

Rd φdµ2 for all compactly supported continuous
functions φ : Rd Ñ R, then µ1 “ µ2.

Exercise 14.29. Let f P L1pRdq be an integrable function. Show that

lim
vÑ0Rd

∥fp ¨ ` vq ´ f∥L1 “ 0.

Exercise 14.30. Let pX,A, µq be a σ-finite complete measure space and let f : X Ñ

r0,8s be a nonnegative measurable function.
Prove that the measure of the subgraph of f coincides with the integral of f , i.e.,

µ b L 1
´

␣

px, tq P X ˆ R : 0 ď t ď fpxq
(

¯

“

ż

X
f dµ.
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Exercise 14.31 (σ-finite is necessary for products). Consider the function µ : 2R Ñ

r0,8s given by

µpEq :“

#

0 if E is countable,

8 if E is uncountable.

Consider the function µ b µ : 2RˆR Ñ r0,8s given by

µ b µpEq :“

#

0 if E Ď pA ˆ Rq Y pR ˆ Bq for some A,B Ď R countable,

8 otherwise.

Let D :“ tpx, xq : x P Ru.

1. Show that µ and µ b µ are measures.

2. Show that µ b µpE ˆ F q “ µpEqµpF q for any E,F Ď R.

3. Show that D P 2R b 2R.

4. Show that µ b µpDq “ 8 but
ş

R µpDxq dµpxq “ 0.

Exercise 14.32 (Integrability is necessary for Fubini-Tonelli). Let fpx, yq :“ x2´y2

px2`y2q2
.

Show that all the integrals involved in the following line makes sense and

ż

r0,1s

´

ż

r0,1s

fpx, yq dL 1pyq

¯

dL 1pxq ‰

ż

r0,1s

´

ż

r0,1s

fpx, yq dL 1pxq

¯

dL 1pyq.

Exercise 14.33. Consider the set S Ď Rd defined as

S “ tx P Rd : x1, x2, . . . , xd ě 0 and x1 ` x2 ` ¨ ¨ ¨ ` xd ď 1u.

Compute the Lebesgue measure of S.

Exercise 14.34 (Vector-valued measures). Let pX,Aq be a measurable space and let
pV, | ¨ |q be a complete normed real vector space.

A function µ : A Ñ V is a vector-valued measure if µpHq “ 0 and µ is σ-additive
(where the infinite summation is not required to converge absolutely).

Given a vector-valued measure µ, define its total variation |µ| : A Ñ r0,8s as we did
in class for signed measures.1

1Observe that signed measures, with our definition, coincide with vector-valued measures when V “ R.
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1. Assume that V is finite-dimensional. Show that there exists a constant ε “ εpV q ą

0 such that the following statement holds. For E P A, if |µ|pEq ą C ą 0 then it
exists a measurable subset E1 Ď E such that |µpE1q| ą εC.2

2. Construct a vector-valued measure µ such that |µ| is not a finite measure (you
can also choose the measurable space pX,Aq and the complete normed real vector
space pV, | ¨ |q).

Exercise 14.35 (Uniqueness of the Hahn-Jordan decomposition). Let pX,Aq be a mea-
surable space. Let µ`, µ´, µ̃`, µ̃´ : A Ñ r0,8q be finite measures so that µ` ´ µ´ “

µ̃` ´ µ̃´ (as signed measures).

If µ` K µ´ (i.e., they are mutually singular) and µ̃` K µ̃´, then µ` “ µ̃` and
µ´ “ µ̃´.

Exercise 14.36. Construct a finite measure µ : BpRq Ñ r0,8s such that µptxuq “ 0 for
all x P R but µ is not absolutely continuous with respect to the Lebesgue measure L 1.

Exercise 14.37. Show that L1pR,BpRq,L 1q is not a Hilbert space.

Exercise 14.38. Let E Ď Rd be a Lebesgue-measurable set. Show that L2pE,L dq is
separable.

Exercise 14.39. Let pH, x ¨ , ¨ yq be a separable (real) Hilbert space. Show that, if it
exists a (not identically zero) translation-invariant locally-finite Borel measure on H,
then H is finite-dimensional.

Exercise 14.40. Let pH, x ¨ , ¨ yq be a (real) Hilbert space and let C Ď H be a closed
nonempty convex3 subset.

1. Given x P H and c1, c2 P C, show that∣∣∣∣x ´
c1 ` c2

2

∣∣∣∣2 “
|x ´ c1|2 ` |x ´ c2|2

2
´

|c1 ´ c2|2

4
.

2This exercise is the analogous of Lemma 7.5 for vector-valued measures. Observe that, once this
exercise is proven, the proof that |µ| is a finite measure that we provided in class for signed measures
can be repeated verbatim in this setting.

3A set is convex if, whenever two points belong to it, the whole segment connecting the two points is
contained in the set.
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2. Given x P H, show that there exists a unique point c̄ P C that minimizes the
distance to x, i.e., |x ´ c| ą |x ´ c̄| for all c P Cztc̄u.

Exercise 14.41. Construct a σ-finite Borel measure µ : BpRdq Ñ r0,8s that is not
outer-regular, i.e., such that there is a Borel set B P BpRdq so that

µpBq ă inf
BĎO
O open

µpOq.

Exercise 14.42. Show that Besicovitch Covering Theorem (Theorem 10.4) is false if
one drops the assumption of uniformly bounded radii and it is false also if the ambient
space is not Rd but a separable infinite dimensional Hilbert space.

Exercise 14.43. Show that a monotone function f : R Ñ R is continuous at all but
countably many points.

Exercise 14.44. Construct two Borel measures µ, ν : BpRq Ñ r0,8s such that µ ! ν
but there is not a measurable function f ě 0 such that µ “ fν.

Exercise 14.45 (Hard). Prove that
␣

b

1
π

(

Y

´
b

2
π cospk ¨ q

¯

kě1
is a Hilbert basis for

L2pr0, πsq.

Exercise 14.46. Let pX,Aq be a measurable space and let µ : A Ñ Rd be a finite vector-
valued measure. Show that there is a finite measure ρ : A Ñ r0,8q and a measurable4

v : X Ñ Sd´1 (where Sd´1 denotes the unit sphere in Rd) so that µ “ v ρ.

Exercise 14.47. Let E Ď Rd be a measurable set. Show that, for almost every x P E,

lim
rÑ0

L dpE X Brpxqq

L dpBrpxqq
“ 1.

Exercise 14.48. Let E P BpRdq be a measurable set with L dpEq ą 0. Show that there
is r ą 0 such that

Brp0Rdq Ď E ´ E :“ te1 ´ e2 : e1, e2 P Eu.

4A vector-valued function is measurable if and only if all of its entries are measurable.
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Exercise 14.49. Let E,F P BpRdq be two measurable sets. Show that there are Ẽ Ď E
and F̃ Ď F so that Ẽ, F̃ are measurable, L dpEzẼq “ 0, L dpF zF̃ q “ 0, and Ẽ ` F̃ is
an open set, where

Ẽ ` F̃ :“ tẽ ` f̃ : ẽ P Ẽ, f̃ P F̃ u.

Exercise 14.50. Let f P L1pRdq be an integrable function. Prove that if Mf P L1pRdq

(where Mf denotes the maximal function) then f “ 0 almost everywhere.

Exercise 14.51. Show that there is a dimensional constant ε “ εpdq ą 0 such that the
following statement holds.

For any f P L1pRdq,

inf
xPB2p0Rd q

Mfpxq ě ε inf
xPB1p0Rd q

Mfpxq.

Exercise 14.52. Construct f, g : r0, 1s Ñ r0, 1s such that f, g P ACpr0, 1sq but f ˝ g R

BV pr0, 1sq.

Exercise 14.53. Let f, g P AClocpRq be two (locally) absolutely continuous functions.
Show that if g is (weakly) increasing, then f ˝ g P AClocpRq.

Exercise 14.54. Let f : I Ñ R be a monotone function on an interval.

Show that, for any measurable set E P BpRq,

ż

f´1pEq

f 1 dL 1 ď L 1pEq.

Exercise 14.55 (Derivative of the product (Hard)). Let f, g P BV pIq be right-continuous
functions on an interval.

1. Show that also the product fg belongs to BV pIq and is right-continuous.

2. Show that the are three finite signed Borel measures such that µf , µg, µfg on I
such that µf ppa, bsq “ fpbq ´ fpaq, µgppa, bsq “ gpbq ´ gpaq, and µfgppa, bsq “

fpbqgpbq ´ fpaqgpaq for all a ă b in I.

3. Prove that

µfg “ fµg ` gµf ´
ÿ

xPDpfqXDpgq

cf pxqcgpxqδx,
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where Dpfq and Dpgq are the discontinuity points of f and g respectively and
cf pxq :“ fpxq ´ fpx´q, cgpxq :“ gpxq ´ gpx´q.5

Exercise 14.56 (Differentiation under the integral sign). Let pX,A, µq be a σ-finite
complete measure space. Let I Ď R be an inteval.

Let f : X ˆ I Ñ R be a measurable function (with respect to A b BpIq) such
that fpx, ¨ q P ACpIq for µ-almost every x P X, fp ¨ , tq P L1pµq for every t P I, and
B2f P L1pµ b L 1q. Then the map

I Q t ÞÑ F ptq :“

ż

X
fpx, tq dµpxq

belongs to ACpIq and its derivative is (for almost every t P I)

F 1ptq “

ż

X
B2fpx, tq dµpxq.

Exercise 14.57. Let E :“ tpx, yq P R2 : x, y ě 0 and x2 ` y2 ď 1u. Compute
ş

E xy dL 2px, yq.

Exercise 14.58. Prove the identity

ż

R
e´x2

dL 1pxq “
?
π .

5By hpy´
q we denote the left limit of the function h at y, i.e., limεŒ0 hpy ´ εq.
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