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Preface

In the Spring of 2024, I had the privilege of teaching Measure Theory (MAT 425) to
Princeton undergraduates. Equally ambitious and unprepared, I decided not to follow
any book. In hindsight this multiplied my workload tenfold, but I like to believe that it
also led to a noticeable improvement in the course’s quality. To provide students with
some material and to have a reference for myself, I began writing down some very concise
lecture notes, which eventually developed into this document (which was compiled on
September 7, 2024).

This is not a standard book by any means. In fact, it might not even qualify as a
book. But if it does, it certainly ranks among the shortest on the subject! It offers a
self-contained! introduction to Measure Theory, with just one minor caveat: there are
no proofs. Instead, it is a compilation of statements and definitions, with occasional
brief comments along the way. The idea? is that by reading everything in sequence, you
can fill in the gaps (i.e., the proofs) yourself and learn the subject proving everything on
your own, perhaps with a little help from a (more experienced) friend or the internet.

The course was inspired by many sources. Among the books I clearly recall consulting
are [EG15; RF10; SS05; Fol99; Magl2]. Another significant inspiration was my fond
memories of the Measure Theory course taught by Pietro Majer ten years ago in Pisa.

To complement the theory, a lengthy collection of exercises is provided at the end.
The exercises are as important as the core material and are organized to match the
progression of the theory. Consistently with the general style of this document, they
come without solutions. The origin of the exercises is varied: some are classic, some
extend the theory beyond what was covered in class, others were copied from books,
online notes, or websites, and some were created by me.

I thank Gioacchino Antonelli for proofreading an early draft of this document. I
want to thank also the teaching assistants for this course — Hyungjun Choi and Anna
Skorobogatova — as well as all the students who spotted a large number of typos and
inconsistencies. I deeply enjoyed teaching this course and I hope that my enthusiasm
was contagious.

"We take for granted only basic facts in topology.

2 Admittedly, the real reason is that I did not want to type out the proofs in KTEX while preparing
the course. But I grew fond of this format and convinced myself that I would have appreciated it as a
student. Whether I would have found it challenging or absurd is another matter.
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1. Basic definitions

Definition 1.1 (c-algebra). Let X be an arbitrary set. A o-algebra A < 2% is a family
of subsets of X such that:

o Je A,
e Fec A = Ec A,
® (BEx)ken© A = Upen Bk € A

Equivalently, a o-algebra is a nonempty family of subsets closed under complement and
countable union.
The elements of the o-algebra are called measurable sets.

Proposition 1.2. A o-algebra is closed under difference and countable intersection.

Lemma 1.3 (o-algebra generated). Let F < 2% be a family of subsets of a base set X.
Denote by o(F) the intersection of all the o-algebras containing all sets in F. The family
o(F) is a o-algebra, and in particular it is the smallest o-algebra that is a superset of
F. The family o(F) is called the o-algebra generated by F.

Definition 1.4 (o-additivity). Let S < 2% be a family of subsets of X. A function
p: S —[0,00] is o-additive if, whenever | |, Ex = E, with (Ej)ren, E € S, we have

> ulEr) = u(E).

keN

Definition 1.5 (Measure and measure space). Let A < 2% be a o-algebra. A measure
on A is a o-additive function p : A — [0, 0] such that p(J) = 0.

A measurable space is a pair (X, A), where A € 2% is a o-algebra.

A measure space is a triple (X, A, 1), where A < 2% is a g-algebra and p : A — [0, 0]
is a measure.

Lemma 1.6. Let (X, A, pn) be a measure space. The measure j is monotone, i.e., if
E < F are measurable sets, then p(E) < p(F).

Definition 1.7 (Dirac 6 measure). Let X be an arbitrary set and let 29 € X be one of
its elements. We denote by &, the measure on 2% such that &, (E) := [xo € E].

Proposition 1.8. Let (X, A, ) be a measure space. The following statements hold.

Linear combination‘ If v : A — [0,0] is another measure, then au + bv is a measure on A for any

a,b>=0.
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For any measurable set A € A, the function pa : A — [0,0] defined as pa(E) ==

w(A n E) is a measure.

Let f : X — Y be an arbitrary function; let fu(A) < 2¥ be the family {E € Y :
FUE) € AL let () < F(A) — [0,0] be the function f()(E) = pu(f~(B)).
The triple (Y, fx(A), f4# (1)) is a measure space.

Definition 1.9. Let (Ej)ken and E be subsets of a set X.

e The notation Ej /" E indicates that Ej, < Ej 44 for all ke N and | oy B = E.

e The notation Ej, \, E indicates that Ej, 2 Ej4; for all k € N and (). Ex = E.

Proposition 1.10. Let (X, A, 1) be a measure space. Let (Ey)ren and E be measurable
space. Then the following two statements hold.

o If By /' E, then p(Ey) / p(E).
o If W(E1) < oo and Ex \, E, then u(Ex) \, p(E).

Lemma 1.11. Let F € 2% be a family of subsets closed under (finite) intersection,
(finite) union, and difference. Let p: F — [0, 0] be a o-additive function. If (Ey)ken, F
are elements of F such that E S |Jyen Ek, then pu(E) < Yoy 1(Ek)-

Moreover, if the family (Ex)1<k<k, @S finite then the statement holds also if we assume
u to be only additive (instead of o-additive).

Lemma 1.12 (Borel-Cantelli). Let (X, A, ) be a measure space. For any sequence
(Ek)ren < A of measurable sets so that Y . p(Ex) < 00, it holds p(limsupyey Ey) = 0.



2.

Construction of measures

The goal of this chapter is to develop a toolbox to construct measures starting from
some simpler data. Although completely elementary, some of the arguments are deli-
cate and technical. The main result is Carathéodory’s Theorem (see Theorem 2.16), a
fundamental result that will be used many times in these notes.

Definition 2.1 (Semiring). Let X be an arbitrary set. A semiring S < 2% is a family
of subsets of X such that:

e (Je S,
e . FeS — EnFes,

e For any E, F € S, there is a finite collection E, Fa, ..., E, € S such that F\F =
|_|Z:1 E.

Lemma 2.2. For a semiring S < 2%, let LS be the family of its finite disjoint unions.
The family LS is closed under finite intersection, finite union, and difference.

Definition 2.3 (Rectangles). Let Recty < 28 he the family of subsets of R? that are
either the empty set or can be expressed as

(a1,b1] x (az,b2] x - -+ x (aa, bal,
where a; < b; for all 1 < i < d. The elements of Recty are called rectangles.
Lemma 2.4. The family Recty is a semiring.

Lemma 2.5. Let i : S — [0,0] be a o-additive function on a semiring S. It admits a
unique o-additive extension to LS.

The statement holds also if one replace both occurrences of the word “o-additive”
with the word “additive”.

Definition 2.6. Let u : S — [0,0] be a o-additive function on a semiring S < 2%.
Define p : 2% — [0, 0] as the function

px(E) == inf 1(Ek),
* ) EgUkeNEk%

where all the subsets E} must belong to S.

Lemma 2.7. Let pu: S — [0,0] be a o-additive function on a semiring S < 2X. If
E < Uen Bk, where E, (Eg)ken are arbitrary subsets of X, then p(E) < Yoy px (Ek)-
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Lemma 2.8. Let u: S — [0,0] be a o-additive function on a semiring S < 2X. It
holds p = s on S.

Definition 2.9 (Outer measure). An outer measure (or exterior measure) is a function
« 1 2% —[0,00] so that . (E) < Yoy s (Ex) whenever E S oy Ek-

Definition 2.10 (Carathéodory-measurable sets). For an outer measure gy : 2% —

[0,00], a set E < X is Carathéodory-measurable if j4(A) = ps(A N E) + ps(A\E) for
all A< X. The family of Carathéodory-measurable sets for u, is denoted by A, .

Lemma 2.11. Let i : S — [0,0] be a o-additive function on a semiring S < 2. Then
all sets in S are Carathéodory-measurable for pu.

In order to show:

Theorem 2.12. Let pi, : 2% — [0,00] be an outer measure. The triple (X, Au,, fts) is
a measure space.

We employ the following two lemmas:

Lemma 2.13. Let py : 2% — [0,00] be an outer measure. The family A,, is closed
under finite union and complement.

Lemma 2.14. Let p, : 25 — [0,00] be an outer measure. If (Ex)ken S Ay, and
Ey /' E, then us(An Ey) / pe(An E) for all A C X.

Definition 2.15 (Finite and o-finite measure). Let p : S — [0, 0] be a function defined
on a family of subsets S < 2X.

The function p is finite if there is a finite covering X = | J;_; Ex with (Ej)1<k<n S S
such that pu(Fx) < oo for all 1 < k < n.

The function p is o-finite if there is a countable covering X = ;.o Er with (Ej)ren S
S such that pu(Ey) < oo for all k € N.

Theorem 2.16 (Carathéodory). Let u : S — [0,00] be a o-additive function on a
semiring S < 2%. It admits an extension to a measure on the o-algebra Ay, of the
Carathéodory measurable sets. Moreover, if p is o-finite, then any extension of p to a
measure defined on a o-algebra contained in A, coincides with fiy.

Definition 2.17 (Negligible sets and complete measure space). Let (X, A, 1) be a mea-
sure space.

A set N € X is p-negligible if it exists N € N’ € A so that u(N’) = 0.

A measure space is complete if and only if all its negligible sets are measurable.

Lemma 2.18 (Completion of a measure space). Let (X, A, u) be a measure space. Let
Ao € 2% be the smallest o-algebra that extends A and contains all p-negligible sets.
We have
Ag = {A LN: Ae A, NCcX u-neglz’gible}.

Define the function py : Ag — [0,90] as po(ALN) = u(A), where Ae Aand N € X
is p-negligible. The function pg is a well-defined measure that coincides with u on A.
The measure space (X, Ao, po) s the completion of (X, A, u).
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Proposition 2.19. Let u : 2X — [0, 0] be an outer measure.
Given E < X, if uy(E) = 0 then E € A,,. In particular, the measure space
(X, Apy, 1) is complete.

Proposition 2.20. Let p: S — [0,0] be a o-additive, o-finite function on a semiring.
For any F < X, the following are equivalent:

e FecA,,, ie., E is Carathéodory-measurable.

e For any € > 0, there is a collection (Ej)reny < S so that E < |y Ex and
M*(UkeN Ek\E) <E.



The Lebesgue measure

We now move on from the construction of a general measure to the investigation of the
properties of the Lebesgue measure, which is the natural measure in Euclidean spaces.

Definition 3.1 (Lebesgue (pre)measure). Let .Z? : Recty — [0,0] be the function
defined as

Zd((al,bl] X (ag,bg] X - X (ad,bd]) = (bl — al)(bg — ag) e (bd - ad).

Even though this is not a measure (since Recty is not a o-algebra) we will call this
function Lebesgue measure.!

Lemma 3.2. The Lebesque measure £ is (finitely) additive on Recty.
Lemma 3.3. The Lebesque measure L% is o-additive on Recty.

Definition 3.4 (Borel sets). For a topological space X, the family of Borel sets B(X)
is the o-algebra generated by open sets.

Proposition 3.5. In the case of the Lebesque measure L%, the o-algebra of Carathéodory
measurable sets (called Lebesgue-measurable sets in this case) corresponds to the com-
pletion of the Borel sets B(R?).

Proposition 3.6. Let E < R? be an arbitrary subset. The following statements are
equivalent:

1. E is Lebesgue-measurable.
2. For any € > 0, there is an open set O € R? so that E € O and L% (O\FE) <¢.

3. For any € > 0, there is a closed set C € R? so that C € FE and L*(E\C) <e. If
ZUE) < o, then the set C can be chosen compact.

Lemma 3.7. We have the following two statements about how Borel or Lebesque-
measurable sets are preserved under a map.

o Let f:RY — R be a continuous injective map. If E is a Borel set, then also f(E)
is a Borel set.

o Let f : R — R? be a Lipschitz-continuous injective map. If E is Lebesque-
measurable, then also f(E) is Lebesgue-measurable.

!Certain books refer to o-additive functions on semirings as premeasures. We decided to avoid this
naming.
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Proposition 3.8. The Lebesgue measure L% is translation-invariant and d-homogeneous.?

Theorem 3.9. The Lebesgue measure £% is the unique measure on the Borel sets B(R?)
that is translation-invariant, d-homogeneous, and such that (0, 1]d has measure 1.

Proposition 3.10. The Lebesgue measure is invariant under isometries of R,

Theorem 3.11 (Vitali). There is not a translation-invariant measure p : 2% — [0, 0]
such that 0 < p([0,1]) < o0.

Corollary 3.12. There exists a subset E < RY that is not Lebesque-measurable.

2A measure p on the Borel sets of R? is d-homogeneous if u(AE) = A%u(E) for each Borel set E and
any A > 0, where \E := {Az: z € E}.

10



Measurable functions

As for sets we distinguish a special class — the measurable sets — a similar discrimination
must be employed for functions to be able to develop a meaningful integration theory.

Definition 4.1. Let (X, A) be a measurable space.
A function f: X — R u {£o0} is measurable if {f < A} € A for all A € R.

Lemma 4.2. Let (X,.A) be a measurable space.
For a function f : X — R u {xw}, the following statements are equivalent:

1. f is measurable,

IS

Af < A}e A forall NeR,

o

Af = A e A forall NeR,

BN

Af>AteAforall NeR,

v

a< f<bleA foralla<b,

6. f~YO) e A for all open sets O C R,
7. f7YCO) € A for all closed sets C € R,
8. f~Y(B) e A for all Borel sets B < R.

Lemma 4.3. Let (X, A) be a measurable space. If fi1, fo,...,fn : X — R is a finite
collection of measurable functions and g : R™ — R is continuous, then g(f1,..., fn) :
X — R is measurable.

Lemma 4.4. The sum, difference, product, division, mazimum, and minimum, supre-
mum, infimum, limsup, liminf of measurable functions is measurable.

Proposition 4.5. For a topological space X, consider the measurable space (X, B(X)).
Any continuous function f: X — R is measurable.

Definition 4.6. Let £ < X be an arbitrary subset, we denote by xg : X — R the
characteristic function of F, i.e.,

1 ifxek,
Xe(x) =

0 ifz¢FE.

11
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Definition 4.7. Let (X, A) be a measurable space. A simple function f: X — R is a
finite linear combination of characteristic functions of measurable sets, i.e.,

n
= Mexe.

k=1
where (A\g)1<k<n € R and (Eg)1<k<n S A.

Simple functions bridge the gap between measurable sets — which are well-understood
at this point — and generic measurable functions. Indeed they allow us to transfer our
understanding of measurable sets to measurable functions.

Lemma 4.8. Let (X, A) be a measurable space. A function f: X — R is simple if and
only if its image is finite and f~1(\) € A for all A e f(X).

The following property of (nonnegative) measurable functions could also be taken as
an alternative definition.

Theorem 4.9. Let (X, .A) be a measurable space and let f : X — [0, 0] be a nonnegative

measurable function. There exists a sequence (fi)ren of nonnegative simple functions
such that fx(z) / f(x) for all x € X.

Corollary 4.10. Let (X, A) be a measurable space and let f : X — R u {0} be
a measurable function. There exists a sequence (fx)ken of simple functions such that

|fe(@)| /| f(x)| and fr(xz) — f(x) for all x € X.

Definition 4.11. Let (X, .4, 1) be a measure space. We say that a property holds u-
almost everywhere in X if the set of points of X that do not satisfy this property is
p-negligible.

Theorem 4.12 (Egorov). Let (X, A, 1) be a measure space.

Let (fi)ren, f : X — R be measurable functions so that fr, — [ pointwise p-almost
everywhere in a measurable set E € A with finite measure, i.e., u(E) < 0.

Then, for any ¢ > 0, there is a measurable set E. < E so that u(E\E:) < ¢ and
fr — [ uniformly in E.

Theorem 4.13 (Lusin). Let f : E € RY — R be a measurable function, where E is a
measurable set with finite measure, i.e., L4 E) < 0.

Then, for any € > 0, there is a measurable set E. € E with Z%(E\E.) < € such that
f|EE : E. — R is continuous.

12



Integration Theory

The development of integration theory progresses by gradually expanding the types of
functions we can integrate. Its value lies in both the robustness of the integral (e.g., the
validity of the dominated convergence theorem) and the broad range of functions it can
handle.

Definition 5.1. Let (X, A, 1) be a measure space.
Given a nonnegative simple function f : X — [0,0), its integral { fdpu is defined
as

| ran= 3 o

Aef(X)

Lemma 5.2. Let (X, A, 1) be a measure space.
Gwen a nonnegative simple function f = > _ MeX g, with A, = 0 and Ej, € A for
all 1 < k < n, we have

| fan= 3wt
X k=1

Lemma 5.3. Let (X, A, ) be a measure space.
Let f,g: X — [0,00) be two nonnegative simple functions. The integral for nonneg-
ative simple functions satisfies the following properties.

11> g0 then Uy Fau >y g
Given o, 8 = 0, we have § oof + Bgdp =l fdu+ By gdu.

Almost everywhere‘ If f = g p-almost everywhere, then §y fdu = §y gdpu.

For a measurable set E € A, observe that (E, Ag, ), where Ap :={Ae A: AC

E}, is a measure space. It holds

JX Ixedp= JE e

where the second integral is interpreted as an integral in the measure space (E, Ag, 11).

Definition 5.4. Let (X, A, 1) be a measure space.
Given a nonnegative measurable function f : X — [0,00], its integral SX fdu is

defined as
J fdu:= sup J wdpu.
X o<p<f Jx

© is simple

13
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Theorem 5.5 (Fatou’s Lemma). Let (X, A, u) be a measure space.
Let (fi)ren : X — [0,00] be a sequence of nonnegative measurable functions. Then

f hm 1nf frdp < hm mff frdu.

Corollary 5.6 (Monotone convergence). Let (X, A, u) be a measure space.
Let (fx)ren : X — [0,00] be a sequence of nonnegative measurable functions so that
fx /7 p-almost everywhere. Then

L fdyu /7 JX fdp.

Lemma 5.7. Let (X, A, n) be a measure space.
Let f,g : X — [0,00] be two nonnegative measurable functions. The integral for
nonnegative measurable functions satisfies the same properties stated in Lemma 5.3.

Definition 5.8. Let (X, A, 1) be a measure space.
A measurable function f: X — R u {+o0} is integrable if § | f|dp < 0.
Given an integrable function f : X — R U {+00}, its integral {, fdpu is defined as’

foeL e[

Lemma 5.9. Let (X, A, ) be a measure space.
Let f,g: X — [0,0] be two nonnegative integrable functions. It holds §(f—g) dp =

Sx fdu—Sxgdu.

Lemma 5.10. Let (X, A, ) be a measure space.
Let f,g : X — R u {xw} be two integrable functions. The integral for integrable

functions satisfies the same properties stated in Lemma 5.8 (for the property,
a, B can be also negative).

Lemma 5.11. Let (X, A, n) be a measure space. For an integrable function f : X —
R U {+a0}, it holds § |f|du = | fdul.

Theorem 5.12 (Dominated convergence). Let (X, A, u) be a measure space.

Let (fi)ken : X — Ru{+00} be a sequence of measurable functions such that | fx| < g
for all k € N, where g : X — R u {£oo} is an integrable function. If fi — f p-almost
everywhere, then

f|fk—frdwo.
X

As a consequence, one also has

ffkdwf fdp.
0, f).

"We denote f1 := max(0, f) and f~ := — min(

14



A Compact Book in Measure Theory

Definition 5.13. Let (X, A, 1) be a measure space.

Let L'(X, A, ;1) (often abbreviated to L'(X) or L'(u) or just L') be the space of
measurable functions f : X — R u {#+o0} such that §, |f| < 0. We identify functions
that are identical u-almost everywhere and we endow such space with the norm

iy = | 171w

Lemma 5.14. Let (X, A, u) be a measure space.
The space L'(X) is a normed vector space, i.e.,

o Ml = Allflls for any X >0 and f e LY(X),

o [If + gl <Iflipe + llgllps, for any f,g € LX),
o [[fll;2 =0 if and only if f = 0 p-almost everywhere.

Definition 5.15 (Complete metric space). A metric space (X,d) is complete if any
Cauchy sequence (i.e., a sequence (zj)reny S X such that suppyd(zg,z) — 0 as
k — o) converges to an element of X.

Theorem 5.16. Let (X, A, p) be a measure space.
The space L'(X) is a complete metric space.

Proposition 5.17. Let (X, A, u) be a measure space.

Let (fi)ken S LY(X) be a sequence of integrable functions such that fr — f in the
LY(X)-distance. There exists a subsequence (f,)ien converging to f p-almost every-
where.

Lemma 5.18. Let (X, A, u) be a measure space.
The family of simple functions is dense in L'(X, A, u).

Lemma 5.19. The family of continuous and compactly supported functions is dense in
LYR%) := LY(R?, B(R4), £9).

15



6. Product Measures

Definition 6.1. Let (X, A, 1) and (Y, B,v) be two complete o-finite measure spaces.
Define py®@v : Ax B — [0,0] as p®v(A x B) := pu(A)v(B).

Lemma 6.2. Let (X, A, u) and (Y,B,v) be two complete o-finite measure spaces.
The family A x B < 2X*Y is a semiring and p® v is o-additive and o-finite.

Definition 6.3 (Product measure). Let (X, A, 1) and (Y, B, v) be two complete o-finite
measure spaces.

Let the product o-algebra A®B be the o-algebra generated by A x B. Let the product
measure p@®v : AQB — [0,0] be the (unique) measure that extends the function p® v
we have defined on A x B.

We will often implicitly extend p ® v to the completion of the o-algebra A ® B"®" .

Lemma 6.4. Let (X, A, u) and (Y,B,v) be two complete o-finite measure spaces.
We have the following statements.

For any Ae A and B € B, it holds that s @ve = (L@ V) axB-*

For two nonnegative real numbers c¢1,ce = 0 and two measures vi,vs : B — [0, 0],
we have p® (c1vq + covn) = 1@ vy + coit ® Vs,

Universality| The o-algebra A® B is the smallest o-algebra on 2X*Y such that the projections

Tx X XY > X and 7y : X xY — Y are both measurable.
Definition 6.5 (Slice). Givenz e X and E € X x Y, let E, :={yeY : (z,y) € E}.

Lemma 6.6. Let (X, A, u) and (Y,B,v) be two complete o-finite measure spaces.

Let |, (A x B) be the family of countable unions of sets in Ax B. Let (), U, (A x B)
be the family of countable intersections of sets in | J (A x B).?

For any set E € (), J,(Ax B):

o The set B, is B-measurable for every x € X;
e The map x — v(E;) is A-measurable;

o It holds p®@v(E) = { v(E,) du(z).

!For a measure p : £ — [0,00] and E € &, we denote by pp : {F € £: F € E} — [0, 0] the restriction
of p to the subsets of F.

*The two families | J, (A x B) and (), |J, (A x B) are usually denoted in the literature as (A x B),
and (A x B),s. We avoid this notation as it is hard to remember what it stands for.

16
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Lemma 6.7. Let (X, A, u) and (Y,B,v) be two complete o-finite measure spaces.
For any set E€ A® B"®" .

o The set B, is B-measurable for pu-almost every x € X;
o The map x — v(E;) is A-measurable;
o It holds p@v(E) = { v(E;) du(z).

Theorem 6.8 (Fubini-Tonelli). Let (X, A, n) and (Y, B,v) be two complete o-finite mea-
sure spaces.
Let f : X xY — R u {xw} be an A®8“®V—mea5umble function such that either

f=0orfel'(pu®v).
Then,

e For p-almost every x € X, the function y — f(x,y) is B-measurable and, if f was
assumed to be integrable, it is integrable with respect to v.

o Themap x — § f(x,y) dv(y) is measurable and, if f was assumed to be integrable,
it 1is integrable with respect to u.

o [t holds
j Fdp@v — j j F(@,y) dvly) du(z).
XxY X JY

Lemma 6.9. Let (X, A, u) and (Y,B,v) be two complete o-finite measure spaces.
If f: X > Ru{tw} is a measurable function, then also X x Y 3 (x,y) — f(x) is
measurable.

Proposition 6.10. For any pair of positive integers di,ds = 1, it holds LN+ —
LU @ L% on B(RI+d2),

17



Signed Measures

Definition 7.1 (Signed measure). Let A < 2% be a o-algebra.

A function p : A — R is a (finite) signed measure if pu() = 0 and p is o-additive
(where the infinite summation is required to converge absolutely).

If 11 is a signed measure, the triple (X, A, p) is called signed measure space.

Lemma 7.2. If (X, A, u%) and (X, A, ™) are two finite measure spaces, then p+ —pu~
A — R is a signed measure.

Lemma 7.3. If (X, A, 1) is a measure space and f € L*(X, A, n) is a measurable func-
tion, then fu: A — R defined as

(F)E) = |

i a signed measure.

Definition 7.4 (Total variation). Let (X, A, 1) be a signed measure space.
Define the total variation |p| : A — [0, 00] of the signed measure p as

ul(B) = sup > |u(ER)l.
Lken Ex=E keN

Lemma 7.5. Let (X, A, ) be a signed measure space.
For E € A, if |u|(E) > C > 0 then it exists a measurable subset E' < E such that

u(E)| > §.

Proposition 7.6. If (X, A, i) is a signed measure space, then the total variation |u| is
a finite measure such that |pW(E)| < |p|(E) for all E € A.

Definition 7.7 (Mutually singular measures). Let (X, A, 1) be a measure space. The
measure p is supported on E € A if X\E is pu-negligible.

Let v : A — [0,0] be another measure. The two measures p and v are mutually
singular, denoted by u L v, if there are two disjoint sets E, F' € A so that u is supported
on F and v is supported on F'.

Theorem 7.8 (Hahn-Jordan Decomposition). Let (X, A, 1) be a signed measure space.
There is a partition X = P u N, with P,N € A, such that

o W(E)>=0if EC P;

e W(E)<0ifECN.

18
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Let pp == p|p and py == —p|y; pp and py are finite measures and coincide with

| + p

wp = 5

Moreover, if p = pp—pin for two mutually singular finite measures (ip, iy : A — [0, 0),
then pip = pp and jiy = py-.
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Absolute Continuity for Measures

Consider two measures p, v on the same measurable space such that whenever a set is
v-negligible it is also u-negligible (see Definition 8.1). This chapter (as well as the next
two) tries to understand whether this relatively innocuous assumption leads to some
nontrivial consequences. We will see that the answer is affirmative but getting there
requires a lot of work. More precisely, first we will establish the converse of Lemma 8.3,
that is Theorem 9.20, and then we will obtain a formula for the density f appearing in
the statement (see Theorem 10.10).

Definition 8.1 (Absolutely continuous measure). Let (X, .4, 1) and (X, A, v) be two
measure spaces.

The function p is absolutely continuous with respect to v, denoted by p « v, if
u(E) = 0 whenever v(E) = 0 (for any E € A).

Lemma 8.2. Let (X,.A) be a measurable space and let p,v : A — [0, 0] be two measures
such that p is finite and p < v.
For any € > 0 there is § > 0 such that if v(E) < 6 then u(E) <e (for any E€ A).

Lemma 8.3. Let (X, A, ) be a measure space and let f € L'(u) be a nonnegative
integrable function.
Then, the measure fu is absolutely continuous with respect to p.

Theorem 8.4 (Lebesgue’s Decomposition). Let (X, A, u) and (X, A, v) be two o-finite
measures.

Then, there are two measures fiae, ths sSuch that p = pige+ s With pee < v and pg L v.
Moreover, such a decomposition is unique.

20



9. A detour into Hilbert spaces

We take a detour into the theory of Hilbert space, which allow us to provide a neat proof
of the classical Radon-Nikodym Theorem Theorem 9.20.
Hilbert spaces are the infinite-dimensional generalization of Euclidean spaces.

Definition 9.1 (Hermitian product). Let H be a complex® vector space. A function
(+,-):V xV — Cis a Hermitian product if (for any z,y,z € H and A € C)

o (rty,z) =22+, 2);
o () = {y.2);
o (Az,y) = Nz, 9);
e (x,x) > 0 whenever z % 0.
As immediate consequences, we have
o (x,y+2) =2,y +(z,2);
o (x,\y) = Nz, y).

Definition 9.2 (Hilbert space). A Hilbert space is a real or complex vector space en-

dowed with a Hermitian product (-, -) so that the norm |z| := <x,x>% makes it a
complete metric space.

Remark 9.3. The spaces R? and C¢ with the standard product (i.e., (z,y) = > TxUk)
are respectively a real and a complex Hilbert space.

Remark 9.4. Any closed subspace of a Hilbert space is itself a Hilbert space.

Remark 9.5. For any measure space (X, A, 1), L*(X, A, ) is a Hilbert space.

Lemma 9.6. Let (H,{-, -)) be a Hilbert space.
For any x,y € H, we have

Cauchy—Schwarz‘ lz| - |y| = Kz, v)|;

Triangle inequality‘ lz] + |y| = |z + yl.

!The definition works also for real vector space; it suffices to replace C with R everywhere.
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Definition 9.7. Let £2(N) be the sequence of square-summable sequences, that is,

CP(N) == {(zr)ken S C: Y fanl” < o0}
keN

endowed with the Hermitian product

@, y)e = Z ayby.

keN
Lemma 9.8. The space ((2(N),{-, -)2) is a separable Hilbert space.

Lemma 9.9. Let (H,{-, -)) be a Hilbert space.
Given a subset S <€ H, its orthogonal is

Sti={xeH: (x,s)=0 forall s e S}.

Remark 9.10. For a subset S € H, its orthogonal S+ is closed (even if S itself was not
closed).

Lemma 9.11. Let (H,{-, -)) be a Hilbert space and let V < H be a closed subspace.
For any x € H, there exists a unique point my(x) € V so that my(x) —x € V1.
Moreover, the map my : H — V 1is linear and 1-Lipschitz.

Corollary 9.12. Let (H,{-, -)) be a Hilbert space and let V < H be a closed subspace.
The map
(mv,myL) H V@Vt

is an isomorphism.

Theorem 9.13 (Riesz representation). Let (H,{-, -)) be a Hilbert space.
For any linear and continuous operator T : H — C, there is vp € H such that
T(z) = {vp,x) for allx € H.

Definition 9.14 (Orthonormal system). Let (H,{-, -)) be a Hilbert space.
A sequence of (vg)ren S H is an orthonormal system? if

o |vg| =1 forall ke N,
o (v, vpy =0 whenever k =+ h.

Lemma 9.15. Let (H,{-, -)) be a Hilbert space and let (vi)keny S H be an orthonormal
system.
Let V' be the closure of the subspace generated by (vi)ken; then for any x € H we
have
mv(@) = Y v, o) and wy(2)P = ) (o o)
keN keN

2For the sake of notational simplicity, we give the definition of orthonormal system only for countable
sequences, but the definition makes perfect sense also for finite sequences (and even for uncountable
ones). Later on we will use the notion of orthonormal system also for finite sequences. Moreover, all the
statements we prove for countable orthonormal system hold also for finite ones.
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Lemma 9.16. Let (H,{-, -)) be a Hilbert space and let (vi)keny S H be an orthonormal
system.
The following statements are equivalent:

1. The subspace generated by (vg)gen 1S dense in H.

2. It holds x = Y ;.. vz, vg) for all x € H.

3. It holds |x|* = ¥ n(x, v)? for all z € H.

4. Given x € H, if (x,viy =0 for all k € N then x = 0.

Definition 9.17 (Hilbert basis). A Hilbert basis is an orthonormal system that satisfies
any of the properties of the previous lemma.

Theorem 9.18. Any separable Hilbert space admits a Hilbert basis.

Corollary 9.19. Any separable Hilbert space is isometric to R? for some d € N or to
2(N).

Theorem 9.20 (Radon-Nikodym, Existence of density). Let (X, A, u) and (X, A,v) be
two o-finite measure spaces with p L v.
There is a function f € L' (v) such that p = fv.
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10.

Differentiation of measures

This chapter represents the culmination of the theory developed in these notes. Radon-
Nikodym Differentiation Theorem (cf. Theorem 10.10) provides a satisfactory charac-
terization of the relationship between two well-behaved measures in Euclidean space.

The significance of the preliminary results (e.g., Besicovitch Covering Theorem, the
maximal function estimate, Lebesgue differentiation) cannot be overestimated. While
we use them as tools to prove the Radon-Nikodym theorem, they are also profound
results in their own right.

Definition 10.1 (Locally finite measure). Let X be a topological space endowed with
a Borel measure u : B(xz) — [0, o0].

The measure p is locally finite if, for any point z € X, there exists a neighborhood
x € Q such that p(Q) < .

Proposition 10.2 (Finite — outer regular in a metric space). Any finite Borel measure
p:B(X) — [0,00) on a metric space X is outer reqular, i.e., for any Borel set E € B(X)
and any € > 0 there is an open set O such that E < O and u(O\E) < €.

Moreover, the space of bounded continuous functions CP(X) is dense in L'(u).

Corollary 10.3 (Locally finite — outer regular in R?). Let u : B(R?) — [0,0] be a
locally finite Borel measure. The measure p is outer regular and the space of compactly
supported continuous functions C2(R?) is dense in L' (u).

Theorem 10.4 (Besicovitch Covering). For any positive integer d > 1, there is a con-
stant N = N(d) such that the following statement holds.

Let F be a family of balls of R® with uniformly bounded radius.

There exists a subfamily F' < F such that

o Any point x € R¢ belongs to at most N balls in F'.!
e The center of any ball in F belongs to at least one ball in F'.

Lemma 10.5. Let L v be two mutually singular locally finite Borel measures on R?.
Then, for v-almost every x € R?, we have

lim ,u(Br(x))

o (B@)

'The usual statement of the Besicovitch covering Theorem is slightly stronger, asserting that F’ can
be partitioned into N sets so that any two balls from different sets are disjoint. However, since this
stronger version is not used later in the theory and complicates both understanding and proof, we have
chosen to simplify it.
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Definition 10.6 (Weak L'-norm). Let (X, A, i) be a measure space.
Given a measurable function f: X — R U {00}, its weak L'-norm is

£, oy = sup A p({a: [f(@)] > A}).

Observe that, by Markov’s inequality, || f|l;1 < || fl|.:-

Definition 10.7 (Maximal function). Let X be a locally compact metric space and let
p: B(X) — [0,00] be a locally finite Borel measure.

Let f: X — R u {£oo} be a Borel function. Its mazimal function with respect to
the measure p, denoted by M, f : X — [0, 0], is defined as

r>0

M, f(z) = Sup]é " |fldp.

Theorem 10.8 (L'— L. bound for the maximal function). There is a constant C = C(d)
such that the following statement holds.

Let v : B(RY) — [0, 0] be a locally finite Borel measure. For any function f € L'(u),
we have

1M1y < Ol -

Theorem 10.9 (Lebesgue differentiation). Let p : B(RY) — [0,00] be a locally finite
Borel measure and let f € L'(u). Then, at p-almost every point x € R, we have

lim |f(y) — f(@)]du(y) = 0.

r—0 Br(z)

A point x € R? is a Lebesgue point for the function f (with respect to the measure 1) if
the latter identity holds.
Moreover, at p-almost every point x € Rd, we have

f(z) = lim fdp.
r—0 By (x)

Theorem 10.10 (Radon-Nikodym, Formula for the density). Let u,v be two locally
finite Borel measures on R®. Then, we can write p = %I/ + s, where pg is a measure

such that ps 1 v, while the density % e LY(v) is defined as

dp, . u(B(x))
a W= )

In particular the latter limit exists and is finite v-almost everywhere.

Corollary 10.11. Let v be a locally finite Borel measure on R and fiz a constant € > 0.
For each x € R%, let Z, be a family of subsets of R%, together with a radius function
r: Z, — (0,00), such that
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1. For any £ € Z;, E < By(g)().
2. For any E € Z,, v(E) = ev (B, (g (z)).

Let ju be a locally finite Borel measure on R, At v-almost-every x € R?, for all sequences
(Ex)ken so that Ey € Z, and r(Ex) — 0 as k — 00, we have

d—u( ) = lim
a Tl v(Ey)
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11.

Differentiability of functions

We exploit the deep results established in the previous chapter to understand the differ-
entiability properties of various family of functions (monotone, AC, BV, and Lipschitz
functions).

Proposition 11.1. Let I < R be an interval.
Given a locally finite! Borel measure u : B(I) — [0, 0], there is a weakly increasing
right-continuous function F : I — R such that u((a,b]) = F(b) — F(a) for all a,be I.
Conversely, given a weakly increasing right-continuous F' : I — R, there is a unique
Borel measure p : B(I) — [0,00] such that ((a,b]) = F(b) — F(a) for all a,be I.

Lemma 11.2. Let f : I — R be a weakly increasing function on a interval I. There is a
weakly increasing function f that is right-continuous and such that there is a countable
set A < I with the following properties:

o For any x € \A, f(x) = f(x).

o Foranyxel\A, f is differentiable at x if and only if f is differentiable at x and,
if they are differentiable, f'(x) = f'(x).

Theorem 11.3 (Lebesgue). Let f : I — R be a weakly increasing function on an
interval. Then f is differentiable almost everywhere and the derivative f’ is locally
integrable. Furthermore, if f is right-continuous, then there is a singular measure pg L

£ such that f(b) — f(a) = S[a,b] f1dLY + ps((a,b]) for alla < b in I.

Definition 11.4 (Function of bounded variation). Let f : I — R be a function on an
interval. We say that f is a function of bounded variation, denoted by f € BV (I), if

n—1
sup Y |f(tern) = f(tk)] < 0.

t1<to<---<tp k=1

Lemma 11.5. Let f € BV(I) be a function of bounded variation on an interval. Given
a<binl, define

n—1

fila,b) = sup > (F(tker) — F(te)*

a=t1<to<--<tn=b k—1

Define f_(a,b) analogously.
Then fi and f_ are (weakly) increasing in their second component, they satisfy
f(b) - f(a) = er(av b) - f*(av b)7

"Here, locally finite shall be understood in the topological space I with the topology inherited from
R. In particular, if I = (a,b) then locally finite does not imply finite.
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and furthermore, if a < b < ¢, we have

f+(a,c):f+(a,b)+f+(b,c) and f_(a,c):f_(a,b)—i—f_(b,c).

Proposition 11.6. A function is of bounded variation if and only if it can be expressed
as the difference of two bounded weakly increasing functions.

Definition 11.7 (Absolutely continuous function). Let f: I — R be a function on an
interval. We say that f is absolutely continuous, denoted by f € AC(I), if for all € > 0
there is § > 0 so that

31(U1k><5 = 208C(f,[k)<€,
k=1 k=1
whenever (Ij)1<k<n are disjoint intervals in I and osc(f, J) = sup,cy f(x) —infzey f(2).

Lemma 11.8. Let f € AC(I) be an absolutely continuous function on an interval. Then
f € BVipe(1).

Lemma 11.9. Let f € AC(I) be an absolutely continuous function on an interval. Given
a € 1, the function t — fi(a,t) belongs to AC(I n [a,)).

Lemma 11.10. Let f € AC(I) be an absolutely continuous (weakly) increasing function
on an interval. Let p : B(I) — [0,00] be the locally finite Borel measure such that
w((a,b]) = f(b) — f(a) for alla < b in I. Then p is absolutely continuous with respect
to Lebesgue.

Theorem 11.11. Let f : I — R be a function on an interval. The following three
statements are equivalent:

1. fe AC (1),

2. There is a locally integrable function g € L}, (I) such that f(b)— f(a) = §
foralla <bin 1.

[a0] I Az

8. The function f is differentiable almost everywhere and it satisfies the fundamental

theorem of calculus, that is, f(b) — f(a) = S[a b] fdL foralla<binI.

Lemma 11.12 (Distributional derivative). Let f € ACj,.(I) be an absolutely continuous

Junction on an open interval I. For any ¢ € CL,(I), we have

jf/god.fl = —J fo dLt.
I I

Lemma 11.13. Let f : R — R be a Lipschitz function such that 0;f = 0 almost
everywhere for alli=1,2,...,d. Then f is constant.
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Theorem 11.14 (Rademacher). Let f : Q@ — R be a locally Lipschitz function, where
Q < R? is an open set. The function f is differentiable almost everywhere in Q and, for
any vector field X € C},(Q,R?), we have?

cpt
L VX = —Lfdiv(X).

2The divergence of a vector field X = (X1, Xo,...,Xq) is defined as div(X) := 1 X1 + 02 X2 + -+ +
0aX4.
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12.

The Change of Variable Formula

Proposition 12.1 (Linear change of variable). For any linear map T : R — R? and
measurable set E € B(R?), the set T(E) is measurable and

ZLUT(E)) = det(T)ZL4E).

Lemma 12.2 (Integral of push-forward). Let (X, A, 1) be a measure space, let (Y, B) be
a measurable space and let T : X — Y be a measurable function, i.e., T-1(B) € A for
all B € B.

Then, for any measurable function f:Y — R U {+o0} that is either nonnegative or
such that f o T € L'(p),

| ratpn— [ soran
% X
where Ty denotes the push-forward measure, i.e., Tyup(B) = p(T—H(B)).

Lemma 12.3. Let T : Q — Q' be a homeomorphism between two open sets O, < R?
so that T is differentiable at xog € 2. Then,

i LB, @0)))
r—0 fd(Br(m)))

— |det(dT (x0))|

Theorem 12.4 (Change of variable formula). Let T : Q — Q' be a locally Lipschitz
homeomorphism between two open sets Q, Q' < R%. Then, for any measurable set E < Q,
its image T(FE) is measurable and

2T (B)) = J (det(dT)| d.2.
E

Furthermore, for any measurable function f : Q' — R u {xo0} that is either nonnegative
or such that f € L' (), we have

f ) dZL(y f f(T(x)) |det(dT)|(x) L (x).

The mnemonic rule to remember is that if y = T'(x), then dy = |det(dT")|dz.

Corollary 12.5 (Polar coordinates). For any function f € L'(R?), we have the identity

o0 2T
fdz? = J f(rcos@,rsinf)dfrdr.
R2 0 0
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13.

The Isoperimetric Inequality

We conclude this notes with one of the most classical results in mathematics: the isoperi-
metric inequality. The proof that we follow uses the Brunn-Minkowski inequality, which
admits a short (but tricky) proof.

Theorem 13.1 (Brunn-Minkowski inequality). Let E, F € R? be two measurable sets
such that also E+ F :={e+ f:e€ E, f € F} is measurable. Then, we have

LUE + F)i > LYE)1 + L4F)a.

Definition 13.2 (Perimeter via Minkowski content). Given a measurable set F < RY,
its perimeter Per(E) is defined as

Per(E) := lim sup "S’pd(Er) - zd(E)

r—0 r

)

where E" := {z € R? : dist(z, F) < r}.
Lemma 13.3. The perimeter Per is translation-invariant and (d — 1)-homogeneous.

Theorem 13.4 (Isoperimetric inequality). For any measurable set E < R? such that
0 < Z4E) < ©, we have
1 1
Per(E)a1 - Per(B)a1
Bl Bl
where B is any ball (the quantity on the right-hand side does not depend on the choice
of the ball). Equivalently, among all measurable sets with a given measure, the ball
minimizes the perimeter.
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14.

Exercises

Exercise 14.1. Let A < 2¥X be a o-algebra. Show that:
1. If E,F € A, then E\F € A.

2. If (Ex)gen € A, then ﬂk:EN B e A

Exercise 14.2. For a partition P = (E})gen of the natural numbers (i.e., | |,y Er = N)
let Ap < 2N be the family of subsets

Ap ::{]!;lgEk: SEN}.

Prove that Ap is a g-algebra and prove that any o-algebra on N coincides with Ap for
some choice of P.

Exercise 14.3. Construct a function p : 2V — [0, 0] that is additive but not o-additive
(i.e., the additive property holds for finitely many disjoint sets but fails for at least one
choice of countably many disjoint sets).

Exercise 14.4 (Hard). Construct a function p : 2% — [0,00) that is additive but not
o-additive. Observe that this exercise differs from the previous one because p is not
allowed to have the value co.

Exercise 14.5 (Counterexample to uniqueness in Carathéodory’s Theorem). Construct
a semiring S € X, a o-additive function p : S — [0,0], and two distinct measures
pi, p2 2 o(S) — [0, 00] defined on the o-algebra generated by S that coincide with p on
S,ie., p(E) = (F) = pu(F) for all E € S.

Exercise 14.6. Let p: S — [0,00] be a monotone (i.e., E € F implies u(E) < pu(F)) o-
finite function on a semiring S < 2%. Show that there is a countable partition (Ej)gen
S (that is X = | |,y Ek) such that u(Ey) < oo for all k£ e N.

n 9

Exercise 14.7. Let u : A — [0,0] be a function defined on a o-algebra A < 2% such
that
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o u() = 0;
e For any two disjoint sets E, F' € A, it holds u(E u F) = u(F) + u(F);
e For any sequence (Ej)keny € A so that Ey, 7 E, it holds u(Ey) / u(E).

Show that (X, A, 1) is a measure space.

Exercise 14.8. Show that the set of real numbers in [0, 1] whose decimal expansion
does not contain the digit 3 is negligible.

Exercise 14.9. Fix e > 0. A real number x € R is e-approximable if there are infinitely
many pairs of integers a € Z, b € N such that |z — §| < b—(2+2)  Show that almost every
real number is not e-approximable.

Exercise 14.10. Construct a closed subset of R with empty interior that is not negli-
gible.

Exercise 14.11. Let C < R? be a convex set. Prove that its topological boundary 6C
is negligible.

Exercise 14.12. Let (X, A, u) and (X, A, i) be two measure spaces such that pu = u’
on An A'. Let f: X — [0,00] be a nonnegative measurable function with respect to
the o-algebra A n A’. Show that

Jdeu = Lfdu’,

where the first integral is computed in the measure space (X,.A, u) and the second in
the measure space (X, A’, i).

Exercise 14.13. Construct a measure space (X, A, 1) and a nonnegative measurable
function f: X — [0, 0] such that

J fdu < inf f pdpy.
X f<e X
¢:X—[0,00] simple

Exercise 14.14. Find a sequence of integrable functions (fx)ken : [0, 1] — R such that
fr — 0 everywhere but S[o 1 fe =1forall keN.
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Exercise 14.15. Find a sequence of integrable functions (fx)ken : [0, 1] — R such that
fr — 0in L! but, for all 0 < = < 1, the sequence of real numbers (fi(z))ren does not
have a limit.

Exercise 14.16. Construct a measurable function f : R — R such that if f = g almost
everywhere then g is discontinuous at every point.

Exercise 14.17. Let (X, A, 1) be a measure space. Fix a real number p > 1.

Let LP(X, A, 1) be the set of measurable functions f : X — R u {£o0} such that |f|"
is integrable quotiented with respect to the almost-everywhere equivalence of functions
(as we did in class to define L'(X, A, u)). Given f € LP(X, A, 1), let us define

1= ([ 197 an)

Prove that LP(X, A, p) with || - ||, is a complete normed vector space.

Exercise 14.18 (Markov Inequality). Let (X, .A, ) be a measure space and let f €
L'(X, A, 1) be an integrable function.
Show that, for any A > 0, u({|f| > A}) < 1 §x |fldp.

Exercise 14.19 (Jensen Inequality). Let (X, .A, u) be a measure space such that p(X) =
1. Let f1, fa,..., fa: X — R be a collection of integrable functions. Show that, for any
convex function @ : R? — [0, o0], it holds

o[ o [ padue | fadi) < [ @ o fi)d

Exercise 14.20 (Holder Inequality). Let (X, A, 1) be a measure space.
Let f,g : X —» R u {+o} be two measurable functions. For any 1 < p,q such that
1= ;1) + %, show that

171l o llgl o = fX|fg|du.

Exercise 14.21. Show that there is a subset of R that is Lebesgue measurable but not
Borel.

Exercise 14.22 (Uniform integrability). Let (X, A, u) be a measure space and let f €
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L'(X,,u) be an integrable function.
Show that for any € > 0 there is 6 > 0 such that, if E' € A satisfies p(E) < J, then

SE|f|d,U<5-

Exercise 14.23. Construct a nonzero, finite, rotationally-invariant measure on the o-
algebra of Borel sets of the sphere S 1 < R,

Exercise 14.24. What is the maximum of S[o et (z) d.L*(z) over all measurable func-
tions f:[0,1] — R u {£oo} such that S[o 1] ALt <17

Exercise 14.25. Show that S[o 1] f'dt = f(1) — f(0) for all functions f e C*([0,1]).

Exercise 14.26. Let (X, A, 1) be a measure space. Let C < R be a closed set.
Assume that f, — f in L'(p) and fi(x) € C for p-almost every z € X for all k € N.
Show that f(z) € C for p-almost every x € X.

Exercise 14.27. Let X be a topological space. Consider the family of subsets
S§={0OnC: Oc< X open, C < X closed}.

Show that S is a semiring.

Exercise 14.28. Let u1, ua : B(R?) — [0, 0] be two finite measures defined on the Borel
sets of R%. Show that if §p, @ duy = §z4 @ dpo for all compactly supported continuous
functions ¢ : R — R, then p; = po.

Exercise 14.29. Let f € L'(R%) be an integrable function. Show that

lim (|- +0) = 2 =0.
v—> Rd

Exercise 14.30. Let (X, A, u) be a o-finite complete measure space and let f : X —
[0, 0] be a nonnegative measurable function.
Prove that the measure of the subgraph of f coincides with the integral of f, i.e.,

u®$1({(a:,t)eX xR: 0 <t<f(a:)}) - Lfdu.
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Exercise 14.31 (o-finite is necessary for products). Consider the function p : 28 —
[0, 0] given by

W(E) =

0 if E is countable,
oo if F is uncountable.

Consider the function p® pu : 28*® — [0, 0] given by

0 ifEFc(AxR)uU(Rx B) for some A, B < R countable,

@ uE) = {oo otherwise.

Let D := {(z,z): x € R}.
1. Show that p and p ® p are measures.
2. Show that p® u(E x F) = u(E)u(F) for any E, F < R.
3. Show that D € 2R ® 2R,

4. Show that p® (D) = oo but §i u(D,) du(z) = 0.

Exercise 14.32 (Integrability is necessary for Fubini-Tonelli). Let f(z,y) := %
Show that all the integrals involved in the following line makes sense and

f[o,l] ( [0.1] f(z.y) AL (y)) AL (@) # J

(| faydz'@)dz @)
[0,1] [0,1]

Exercise 14.33. Consider the set S € R? defined as
S = {xeRd:azl,azg,...,xd>0and x1+xo+ -+ x4 < 1}

Compute the Lebesgue measure of S.

Exercise 14.34 (Vector-valued measures). Let (X,.4) be a measurable space and let
(V,]-]) be a complete normed real vector space.

A function p : A — V is a vector-valued measure if u(¢J) = 0 and p is o-additive
(where the infinite summation is not required to converge absolutely).

Given a vector-valued measure p, define its total variation |u| : A — [0, 0] as we did
in class for signed measures.!

!Observe that signed measures, with our definition, coincide with vector-valued measures when V = R.
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1. Assume that V is finite-dimensional. Show that there exists a constant ¢ = (V') >
0 such that the following statement holds. For E € A, if |u|(E) > C > 0 then it
exists a measurable subset E’ € E such that |u(E’)| > ¢C.2

2. Construct a vector-valued measure p such that |p| is not a finite measure (you
can also choose the measurable space (X, .A) and the complete normed real vector
space (V,]-])).

Exercise 14.35 (Uniqueness of the Hahn-Jordan decomposition). Let (X,.A) be a mea-
surable space. Let py,pu—, fiq,fic : A — [0,00) be finite measures so that iy — p_ =
f+ — fi— (as signed measures).

If ur L p— (ie., they are mutually singular) and g4 L fi—, then py = 4+ and
fio = fi.

Exercise 14.36. Construct a finite measure p : B(R) — [0, 0] such that p({z}) = 0 for
all € R but p is not absolutely continuous with respect to the Lebesgue measure .#!.

Exercise 14.37. Show that L'(R, B(R),.£*) is not a Hilbert space.

Exercise 14.38. Let £ € R? be a Lebesgue-measurable set. Show that L?(E,.Z?) is
separable.

Exercise 14.39. Let (H,{-, -)) be a separable (real) Hilbert space. Show that, if it
exists a (not identically zero) translation-invariant locally-finite Borel measure on H,
then H is finite-dimensional.

Exercise 14.40. Let (H,{-, -)) be a (real) Hilbert space and let C' < H be a closed
nonempty convex® subset.

1. Given x € H and ¢y, cy € C, show that

2 2 2 2
Latal’ lp-alftlz-of  |a-—ce
2 2 4 ’
2This exercise is the analogous of Lemma 7.5 for vector-valued measures. Observe that, once this
exercise is proven, the proof that |u| is a finite measure that we provided in class for signed measures
can be repeated verbatim in this setting.

3A set is convex if, whenever two points belong to it, the whole segment connecting the two points is
contained in the set.
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2. Given x € H, show that there exists a unique point ¢ € C that minimizes the
distance to z, i.e., |x — ¢| > |z — ¢| for all ¢ € C\{c}.

Exercise 14.41. Construct a o-finite Borel measure u : B(R?) — [0, 0] that is not
outer-regular, i.e., such that there is a Borel set B € B(R?) so that

wB) < jnf u(0).
O open

Exercise 14.42. Show that Besicovitch Covering Theorem (Theorem 10.4) is false if
one drops the assumption of uniformly bounded radii and it is false also if the ambient
space is not R? but a separable infinite dimensional Hilbert space.

Exercise 14.43. Show that a monotone function f : R — R is continuous at all but
countably many points.

Exercise 14.44. Construct two Borel measures p, v : B(R) — [0, 0] such that p « v
but there is not a measurable function f > 0 such that p = fv.

Exercise 14.45 (Hard). Prove that {\/%} v (ﬂcos(k-))k . is a Hilbert basis for
>
L*([0, 7]).

Exercise 14.46. Let (X, A) be a measurable space and let i : A — R? be a finite vector-
valued measure. Show that there is a finite measure p : A — [0,00) and a measurable*
v: X — S (where S~ denotes the unit sphere in R?) so that p = v p.

Exercise 14.47. Let E < R? be a measurable set. Show that, for almost every z € E,

lim ZLUE n By(x))

M 2aB ) ¢

Exercise 14.48. Let E € B(R9) be a measurable set with .#¢(F) > 0. Show that there
is 7 > 0 such that
B,(Oga) € E—FE:={e; —eg: e1,eq € E}.

1A vector-valued function is measurable if and only if all of its entries are measurable.
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Exercise 14.49. Let E, F € B(R?) be two measurable sets. Show that there are E < E
and F € F so that E, F are measurable, Z4(F\E) = 0, Z4(F\F) = 0, and E + F is
an open set, where

E+F:={é+f:¢écE, feF}.

Exercise 14.50. Let f € L'(R?) be an integrable function. Prove that if M f € L'(R9)
(where M f denotes the maximal function) then f = 0 almost everywhere.

Exercise 14.51. Show that there is a dimensional constant ¢ = &(d) > 0 such that the
following statement holds.
For any f e L'(R%),

inf Mf(x)=e inf Mf(z).

2€B2(0pa) z€B1(0pq)

Exercise 14.52. Construct f, g : [0,1] — [0, 1] such that f,g € AC([0,1]) but fog ¢
BV ([0,1]).

Exercise 14.53. Let f,g € ACj,:(R) be two (locally) absolutely continuous functions.
Show that if g is (weakly) increasing, then f o g e ACj,.(R).

Exercise 14.54. Let f : I — R be a monotone function on an interval.

Show that, for any measurable set E € B(R),

f fldst < 2Y(E).
FHE)

Exercise 14.55 (Derivative of the product (Hard)). Let f, g € BV (I) be right-continuous
functions on an interval.

1. Show that also the product fg belongs to BV (I) and is right-continuous.

2. Show that the are three finite signed Borel measures such that gy, pg, ppy on I

such that y7((a,0]) = f(b) — f(a), ng((a,b]) = g(b) — g(a), and ps,((a,b]) =
f(b)g(b) — f(a)g(a) for all a < b in I.

3. Prove that

Krg = flg + guy — Z cf(x)eg(x)dz,
zeD(f)nD(g)
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where D(f) and D(g) are the discontinuity points of f and g respectively and
i

cf(z) = f(z) = f(27), cq(2) == g(x) — g(z7)

Exercise 14.56 (Differentiation under the integral sign). Let (X, A, u) be a o-finite
complete measure space. Let I € R be an inteval.

Let f : X x I — R be a measurable function (with respect to A ® B(I)) such
that f(x, -) € AC(I) for p-almost every z € X, f(-,t) € L'(u) for every t € I, and
Oof € L' (u®.Z1). Then the map

Ist— F(t ffxtdu()

belongs to AC(I) and its derivative is (for almost every t € I)

_ j 0o f (2, 1) dp().
X

Exercise 14.57. Let E := {(z,y) € R? : 2,y > 0and 22 + y?> < 1}. Compute
SEmyd.fQ(a:,y).

Exercise 14.58. Prove the identity

JR e d.L (x) = /7.

®By h(y~) we denote the left limit of the function h at y, i.e., lime o h(y — €).
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